Holy Cross College (Autonomous), Nagercoil - 629004

Kanyakumari District, Tamil Nadu.

Nationally Accredited with  $A^+$  by NAAC IV cycle – CGPA 3.35

Affiliated to

# Manonmaniam Sundaranar University, Tirunelveli



# DEPARTMENT OF MATHEMATICS



TEACHING PLAN (PG) EVEN SEMESTER 2024-2025

### Vision

To empower women globally competent with human values and ethics acquiring academic and entrepreneurship skills through holistic education.

#### Mission

- 1. To create opportunities which will ensure academic excellence in critical thinking, humanistic and scientific inquiry.
- 2. To develop application-oriented courses with the necessary input of values.
- 3. To create a possible environment for innovation, team spirit and entrepreneurial leadership.
- 4. To form young women of competence, commitment and compassion.

### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

| PEOs | Upon completion of M. Sc. Degree Programme, the graduates will be able to:                                                                                         | Mapping<br>with |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|      |                                                                                                                                                                    | Mission         |
| PEO1 | apply scientific and computational technology to solve social and<br>ecological issues and pursue research.                                                        | M1, M2          |
| PEO2 | continue to learn and advance their career in industry both in private and public sectors.                                                                         | M4 & M5         |
| PEO3 | develop leadership, teamwork, and professional abilities to become a<br>more cultured and civilized person and to tackle the challenges in<br>serving the country. | M2, M5 &<br>M6  |

# **PROGRAMME OUTCOMES (POs)**

| POs        | Upon completion of M.Sc. Degree Programme, the graduates           | Mapping with |
|------------|--------------------------------------------------------------------|--------------|
|            | will be able to:                                                   | PEOs         |
| PO1        | apply their knowledge, analyze complex problems, think             | PEO1 & PEO2  |
|            | independently, formulate and perform quality research.             |              |
| PO2        | carry out internship programmes and research projects to develop   | PEO1, PEO2 & |
|            | scientific and innovative ideas through effective communication.   | PEO3         |
| PO3        | develop a multidisciplinary perspective and contribute to the      | PEO2         |
|            | knowledge capital of the globe.                                    |              |
| PO4        | develop innovative initiatives to sustain eco friendly environment | PEO1, PEO2   |
| PO5        | through active career, team work and using managerial skills guide | PEO2         |
|            | people to the right destination in a smooth and efficient way.     |              |
| PO6        | employ appropriate analysis tools and ICT in a range of learning   | PEO1, PEO2 & |
|            | scenarios, demonstrating the capacity to find, assess, and apply   | PEO3         |
|            | relevant information sources.                                      |              |
| <b>PO7</b> | learn independently for lifelong executing professional, social    | PEO3         |
|            | and ethical responsibilities leading to sustainable development.   |              |

### PROGRAMMESPECIFICOUTCOMES(PSOs)

| PSO   | Upon completion of M.Sc. Degree Programme, the graduates of<br>Mathematics will be able to:                                  | PO<br>Addressed |  |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|
|       | acquire good knowledge and understanding, to solve specific theoretical                                                      | PO1 & PO2       |  |  |  |  |  |  |  |  |
| PSO-1 | & applied problems in different area of mathematics & statistics                                                             |                 |  |  |  |  |  |  |  |  |
|       | understand, formulate, develop mathematical arguments, logically and                                                         |                 |  |  |  |  |  |  |  |  |
| PSO-2 | use quantitative models to address issues arising in social sciences,                                                        | PO3 & PO5       |  |  |  |  |  |  |  |  |
|       | business and other context /fields.                                                                                          |                 |  |  |  |  |  |  |  |  |
|       | prepare the students who will demonstrate respectful engagement with                                                         |                 |  |  |  |  |  |  |  |  |
| PSO-3 | other's ideas, behaviors, beliefs and apply diverse frames of references to                                                  | PO6             |  |  |  |  |  |  |  |  |
|       | decisions and actions                                                                                                        |                 |  |  |  |  |  |  |  |  |
|       | pursue scientific research and develop new findings with global                                                              | PO4 & PO7       |  |  |  |  |  |  |  |  |
| PSO-4 | impact using latest technologies.                                                                                            |                 |  |  |  |  |  |  |  |  |
|       | possess leadership, teamwork and professional skills, enabling them to                                                       |                 |  |  |  |  |  |  |  |  |
| PSO-5 | become cultured and civilized individuals capable of effectively<br>overcoming challenges in both private and public sectors | PO5 & PO7       |  |  |  |  |  |  |  |  |

| Department         | : Mathematics      |  |  |  |  |  |  |
|--------------------|--------------------|--|--|--|--|--|--|
| Class              | : I M.Sc           |  |  |  |  |  |  |
| Semester           | : II               |  |  |  |  |  |  |
| Name of the Course | : Advanced Algebra |  |  |  |  |  |  |
| <b>Course Code</b> | : MP232CC1         |  |  |  |  |  |  |
|                    |                    |  |  |  |  |  |  |

| Course Code | L | Т | Р | S | Credits | Inst.<br>Hours | Total<br>Hours | Marks |          |       |
|-------------|---|---|---|---|---------|----------------|----------------|-------|----------|-------|
|             |   |   |   |   |         |                | i ourb         | CIA   | External | Total |
| MP232CC1    | 5 | 1 | - | - | 5       | 6              | 90             | 25    | 75       | 100   |

### **Learning Objectives**

1. To study field extension, roots of polynomials, Galois Theory, finite fields, division rings, solvability by radicals

2. To develop computational skill in abstract algebra.

# **Course Outcomes**

| On the | successful completion of the course, students will be able to:                                                                                       |    |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.     | Exhibit a foundational understanding of essential concepts, including field extensions, roots of polynomials, Galois Theory, and finite extensions   | K1 |
| 2.     | Demonstrate knowledge and understanding of the fundamental concepts<br>including extension fields, Galois Theory, Automorphisms and Finite<br>fields | K2 |
| 3.     | Compose clear and accurate proofs using the concepts of Field extension,<br>Galois Theory and Finite field                                           | K3 |
| 4.     | Examine the relationships between different types of field extensions and their implications by applying algebraic reasoning                         | K4 |
| 5.     | Evaluate the validity of statements and theorems in field theory by providing proofs or counterexamples                                              | К5 |
| 6.     | Develop novel results or theorems in field theory, potentially by<br>exploring extensions of existing theories                                       | K6 |

| Ilm:4 | Madula | Tonio                                                                                     | Teaching             | Cognitive        | Dedegegy                     | Assessment/                  |  |  |  |
|-------|--------|-------------------------------------------------------------------------------------------|----------------------|------------------|------------------------------|------------------------------|--|--|--|
| Umt   | Module | Торіс                                                                                     | Hours                | level            | reuagogy                     | Evaluation                   |  |  |  |
| Ι     |        |                                                                                           | Extension            | Extension Fields |                              |                              |  |  |  |
|       | 1.     | Extension Fields,<br>dimension, subfield-<br>Introduction and definition                  | 2                    | K1 & K2          | Brainstorming                | MCQ                          |  |  |  |
|       | 2.     | Theorems based on extension fields                                                        | 3                    | K3               | Chalk and<br>Talk            | Slip Test using<br>Socrative |  |  |  |
|       | 3.     | Definition and Theorems on algebraic over a field F                                       | 3                    | K1 & K3          | Analytic<br>Method           | Questioning                  |  |  |  |
|       | 4.     | Theorems on algebraic extension                                                           | 3                    | K5               | Lecture with<br>Illustration | Questioning                  |  |  |  |
|       | 5.     | Interpretation of Extension<br>fields such as finite<br>extension, algebraic<br>extension | 1                    | K4               | Collaborative<br>learning    | Concept<br>explanations      |  |  |  |
|       | 6.     | Transcendence of e                                                                        | 3                    | K2, K3 &<br>K5   | Blended<br>classroom         | Evaluation<br>through poll   |  |  |  |
| Π     |        | R                                                                                         | Roots of Polynomials |                  |                              |                              |  |  |  |
|       | 1.     | Definition- roots of<br>polynomials, multiplicity of<br>roots                             | 1                    | K1               | Brainstorming                | True/False                   |  |  |  |
|       | 2.     | Remainder theorem                                                                         | 1                    | K3               | Flipped<br>Classroom         | Short summary of the theorem |  |  |  |
|       | 3.     | Theorems based on roots of polynomials                                                    | 2                    | K2 & K3          | Lecture<br>Discussion        | Concept<br>definitions       |  |  |  |
|       | 4.     | Existence theorem of splitting fields                                                     | 2                    | K3 & K4          | Group<br>Discussion          | Recall steps                 |  |  |  |

Total contact hours: 90 (Including instruction hours, assignments and tests)

|     | 5. | Theorems based on                                                  | 2             | K3      | Lecture with           | Questioning                         |  |  |  |
|-----|----|--------------------------------------------------------------------|---------------|---------|------------------------|-------------------------------------|--|--|--|
|     |    | isomorphism of fields                                              |               |         | Illustration           |                                     |  |  |  |
|     | 6. | Theorems based on splitting field of polynomials                   | 2             | K3      | Blended classroom      | MCQ                                 |  |  |  |
|     | 7. | Uniqueness theorem of splitting fields                             | 2             | K4 & K5 | Peer<br>Instruction    | Slip Test using<br>Quizziz          |  |  |  |
|     | 8. | Definition- derivative of<br>polynomials, Simple<br>extension      | 1             | K2 & K3 | Flipped<br>Classroom   | Quiz                                |  |  |  |
|     | 9. | Theorems on simple<br>extension                                    | 2             | K5& K6  | Integrative<br>method  | Evaluation<br>through short<br>test |  |  |  |
| III |    |                                                                    | Galois Theory |         |                        |                                     |  |  |  |
|     | 1. | Definition -Fixed Field,<br>Group of automorphism                  | 1             | K1 & K2 | Brainstorming          | Quiz                                |  |  |  |
|     | 2. | Theorems on Fixed Field                                            | 2             | К3      | Lecture                | Concept<br>Explanation              |  |  |  |
|     | 3. | Theorems on Group of<br>Automorphism                               | 3             | K4      | Lecture<br>Discussion  | Slip Test                           |  |  |  |
|     | 4. | Theorems on Normal<br>Extension                                    | 2             | К5      | Lecture                | Questioning                         |  |  |  |
|     | 5. | Theorems on Galois Group                                           | 3             | K6      | Collaborative learning | Questioning                         |  |  |  |
|     | 6. | Construct theorems on<br>Normal Extension and<br>Galois Group      | 4             | K6      | Poster<br>Presentation | Simple<br>Questions                 |  |  |  |
| IV  |    |                                                                    | Finite Fie    | elds    |                        |                                     |  |  |  |
|     | 1. | Definition -Finite Fields,<br>Characteristic of F with<br>examples | 3             | K1 & K2 | Brainstorming          | Quiz                                |  |  |  |

|   | 2.<br>3.<br>4. | Theorems based on Finite<br>Fields and Characteristic of<br>F<br>Finite field and Cyclic<br>group<br>Wedderburn's Theorem on<br>finite division ring | 4 4 4         | K3 & K4<br>K4 & K5<br>K4 & K5 | Flipped<br>Classroom<br>Analytic<br>Method<br>Integrative<br>method | Differentiate<br>between<br>various ideas<br>Simple<br>Questions<br>Concept<br>Explain |
|---|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| V |                | So                                                                                                                                                   | olvability by | Radicals                      |                                                                     | Zapian                                                                                 |
|   | 1.             | Solvability by radicals -<br>Introduction                                                                                                            | 1             | K1 & K2                       | Seminar<br>Presentation                                             | MCQ                                                                                    |
|   | 2.             | Solvable and Commutator group                                                                                                                        | 1             | K4                            | Seminar<br>Presentation                                             | Concept<br>explanations                                                                |
|   | 3.             | Lemma and Theorem based<br>on solvable by radicals                                                                                                   | 1             | K4 & K5                       | Seminar<br>Presentation                                             | Questioning                                                                            |
|   | 4.             | General polynomial definition and theorem                                                                                                            | 2             | K2 & K3                       | Seminar<br>Presentation                                             | Slip Test                                                                              |
|   | 5.             | Definitions -algebraic over<br>F and Frobenius theorem                                                                                               | 4             | K2 & K5                       | Seminar<br>Presentation                                             | Simple<br>Questions                                                                    |
|   | 6.             | Internal quaternions and<br>Lagrange identity                                                                                                        | 2             | K4                            | Seminar<br>Presentation                                             | Evaluation<br>through short<br>test                                                    |
|   | 7.             | Left-Division algorithm                                                                                                                              | 3             | K6                            | Seminar<br>Presentation                                             | Simple<br>Questions                                                                    |
|   | 8.             | Four-Square Theorem                                                                                                                                  | 3             | K6                            | Seminar<br>Presentation                                             | Simple<br>Questions                                                                    |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

Activities (Em/ En/SD): Poster Presentation, Develop Theorems on Extension Fields

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

### Assignment: Make an interactive PPT (Any topic from the syllabus)

Seminar Topic: Unit V

### Sample questions

### Part A

- 2. Complete: Any polynomial of degree n over a field can have ----- roots in any extension field.

a) exactly n b) at least n c) at most n d) exactly n+1

- 3. What is the Galois group of  $x^3 3x 3$  over Q?
- 4. Say True or False:  $\Phi_3(x) = x^2 + x + 1$  is a cyclotomic polynomial
- 5. Say True or False: The adjoint in Q satisfies  $x^{**} = x$

### Part B

- 1. Prove that F(a) is the smallest subfield of K containing both F and a
- 2. State and prove Remainder theorem
- 3. If K is a finite Extension of F ,then G(K,F) is a finite group then prove that  $o(G(K,F)) \le [K:F]$
- 4. Analyse: For every prime number p and every positive integer m there is a unique field having p<sup>m</sup> elements
- 5. State and prove Lagrange Identity.

### Part C

- 1. Prove that the element  $a \in K$  is algebraic over F if and only if F(a) is a finite extension of F
- 2. Justify: A polynomial of degree n over a field can have at most n roots in any extension field
- 3. State and prove fundamental theorem of Galois theory
- 4. Prove that, the multiplicative group of nonzero elements of a finite field is cyclic.
- 5. Justify: Every positive integer can be expressed as the sum of squares of four integers.

Head of the Department

Dr. T. Sheeba Helen

Course Instructor

Dr. S.Sujitha

| Department         | : Mathematics                       |
|--------------------|-------------------------------------|
| Class              | : I M.Sc                            |
| Semester           | : 11                                |
| Name of the Course | : Core Course V: Real Analysis – II |

Course Code : MP242CC2

| Course Code | L | Т | Р | P S | Credits | Inst. To<br>Hours Ho | Total<br>Hours | Marks |          |       |
|-------------|---|---|---|-----|---------|----------------------|----------------|-------|----------|-------|
|             |   |   |   |     |         |                      | nours          | CIA   | External | Total |
| MP242CC2    | 5 | 1 | - | -   | 5       | 6                    | 90             | 25    | 75       | 100   |

## Learning Objectives

- 1. To introduce measure on the real line, Lebesgue measurability and integrability, Fourier Series and Integrals.
- 2. To get the in-depth study in multivariable calculus.

### **Course Outcomes**

| On the s | uccessful completion of the course, students will be able to:                                                                                                                                                     |    |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1.       | recall the basic concepts of measurable sets, measurable function, integration<br>of functions, Fourier series on real line and multivariable differential calculus,<br>implicit functions and extremum problems. | K1 |
| 2.       | describe the elementary facts of Lebesgue measure, Lebesgue integral, Fourier<br>series and multivariable differential calculus; understand the implicit functions<br>and extremun problems.                      | K2 |
| 3.       | determine the measurable sets, measurable functions, the matrix representation and Jacobian determinant of functions.                                                                                             | К3 |
| 4.       | analyze the properties of measurable functions, Riemann and Lebesgue integrals, convergence of Fourier series and extrema of real valued functions.                                                               | K4 |
| 5.       | test measurable sets and measurable functions.                                                                                                                                                                    | K5 |

| <b>T</b> T •4 |        |                                                                          | Teaching   | Cognitive    |                                                     | Assessment/             |
|---------------|--------|--------------------------------------------------------------------------|------------|--------------|-----------------------------------------------------|-------------------------|
| Unit          | Module | Горіс                                                                    | Hours      | level        | Pedagogy                                            | Evaluation              |
| Ι             |        |                                                                          | Lebesgue   | Measure      | 1                                                   | I                       |
|               | 1.     | Introduction<br>Outer Measure                                            | 3          | K1           | Brain storming                                      | Questioning             |
|               | 2.     | Measurable sets and<br>Lebesgue measure                                  | 4          | K2 & K5      | Context based                                       | Quiz through<br>Quizziz |
|               | 3.     | A non measurable set                                                     | 2          | К3           | Interactive<br>Teaching                             | Student<br>Presentation |
|               | 4.     | Measurable Functions                                                     | 4          | K2 &K5       | Lecture with<br>Illustration                        | Oral Test               |
|               | 5.     | Littlewood's three principles                                            | 2          | K2           | Collaborative learning                              | Concept<br>explanations |
| II            |        |                                                                          | The Lebesg | gue Integral |                                                     |                         |
|               | 1.     | The Riemann Integral                                                     | 5          | K1 & K2      | Brainstorming                                       | Quiz through<br>Slido   |
|               | 2.     | The Lebesgue integral of a bounded function over a set of finite measure | 5          | К3           | Flipped<br>Classroom<br>and Seminar<br>Presentation | Home Work               |
|               | 3.     | The integral of a nonnegative function                                   | 3          | K2           | Blended<br>Learning                                 | Assignment              |
|               | 4.     | The general Lebesgue<br>integral                                         | 2          | К4           | Lecture &<br>Seminar<br>presentation                | Oral presentation       |

# Total contact hours: 90 (Including instruction hours, assignments and tests)

| III | Fourier Series and Fourier Integrals                                                                       |                                                                                                                                               |              |          |                                                    |                           |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------------------------------------------------|---------------------------|--|--|--|--|
|     | 1.                                                                                                         | Orthogonal system of<br>functions - The theorem on<br>best approximation                                                                      | 3            | K1 & K2  | Brainstorming                                      | Quiz through<br>Socrative |  |  |  |  |
|     | 2.                                                                                                         | The Fourier series of a<br>function relative to an<br>orthonormal system -<br>Properties of Fourier<br>Coefficients                           | 2            | K4       | Lecture                                            | Questioning               |  |  |  |  |
|     | 3.                                                                                                         | The Riesz-Fischer Thorem -<br>The convergence and<br>representation problems for<br>trigonometric series - The<br>Riemann - Lebesgue<br>Lemma | 4            | К3       | Content Based                                      | Concept<br>Explanation    |  |  |  |  |
|     | 4. The Dirichlet<br>Integrals - An integral<br>representation for the<br>partial sums of<br>Fourier series |                                                                                                                                               | 4            | K4       | Flipped<br>Class Room<br>& Seminar<br>Presentation | Slip Test                 |  |  |  |  |
|     | 5.                                                                                                         | 5. Riemann's<br>localization theorem<br>- Sufficient<br>conditions for<br>convergence of a<br>Fourier series at a<br>particular point         |              | K4       | Lecture                                            | Home Work                 |  |  |  |  |
|     | 6.                                                                                                         | Cesaro summability of<br>Fourier series-<br>Consequences of Fejes's<br>theorem - The Weierstrass<br>approximation theorem                     | 3            | K4       | Collaborative<br>learning                          | Recall Concepts           |  |  |  |  |
| IV  |                                                                                                            | Multivariable                                                                                                                                 | Differential | Calculus |                                                    |                           |  |  |  |  |
|     | 1.                                                                                                         | The Directional derivative -<br>Directional derivative and<br>continuity                                                                      | 4            | K1 & K2  | Brainstorming                                      | Quiz through<br>Quizziz   |  |  |  |  |

|   | 2.           | The total derivative - The              | 4          | K2 & K3    | Flipped         | Differentiate |
|---|--------------|-----------------------------------------|------------|------------|-----------------|---------------|
|   |              | total derivative expressed in           |            |            | Classroom       | between       |
|   |              | terms of partial derivatives-           |            |            |                 | various ideas |
|   | 3.           | The matrix of linear                    | 2          | K3         | Illustrative    | Simple        |
|   |              | function - The Jacobian matrix          |            |            | Method          | Questions     |
|   | 4.           | The chain rule - Matrix form            | 3          | K2 & K3    | Lecture         | Concept       |
|   |              | of chain rule                           |            |            | Method          | Explain       |
|   | 5.           | The mean - value theorem                | 3          | K4         | Content         | Home          |
|   |              | for differentiable functions            |            |            | Based           | Work          |
|   |              | - A sufficient condition for            |            |            |                 |               |
|   |              | differentiability                       |            |            |                 |               |
|   | 6.           | A sufficient condition for              | 2          | K4         | Lecture         | Slip          |
|   |              | equality of mixed partial               |            |            | Method          | Test          |
|   |              | derivatives                             |            |            |                 |               |
|   | 7.           | Taylor's theorem for functions          | 2          | T7 4       | Content         | Short         |
|   |              | of $\mathbb{R}^n$ to $\mathbb{R}^1$     |            | K4         | Based           | Answer        |
|   |              |                                         |            |            |                 | Test          |
| V |              | Implicit Functions and I                | Extremum I | Problems   |                 |               |
|   | 1.           | Functions with non-zero                 | 4          | K2 & K3    | Content Based   | Questioning   |
|   |              | Jacobian determinants                   |            |            |                 |               |
|   | 2.           | The inverse function                    | 3          | K3         | Analytic Method | Concept       |
|   |              | theorem                                 |            |            |                 | explanations  |
|   | 3.           | The Implicit function                   | 3          | K3         | Lecture Method  | Questioning   |
|   |              | theorem-                                |            |            |                 |               |
|   | Δ            | Extrema of real valued                  | 5          | K2 & K4    | Content Based   | Home Work     |
|   | - <b>T</b> • | Easting of four values                  | 5          | 112 00 117 | and Seminar     | Home WOIK     |
|   |              | runctions of severable                  |            |            | Presentation    |               |
|   |              | variables                               |            |            |                 |               |
|   |              |                                         |            |            |                 |               |
|   | 4.           | Extremum problems with side             | 5          | K4         | Lecture Method  | Slip Test     |
|   | 4.           | Extremum problems with side conditions. | 5          | K4         | Lecture Method  | Slip Test     |
|   | 4.           | Extremum problems with side conditions. | 5          | K4         | Lecture Method  | Slip Test     |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability

### Activities (Em/ En/SD): Poster Presentation and Video Making

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

### Assignment: Make an interactive PPT using AI (Any topic from the syllabus) Seminar Topic: Problems in the Exercises

# **Sample Questions**

### Part A

- Which of the following is not measurable set

   (a) Interval
   (b) Borel set
   (c) subset of a measurable set
- 2. Dirichlet's function on [a,b] is . . . . .
- 3. A function is said to be periodic with period  $p \neq 0$  if ....
- 4. The directional derivative of f at c in the direction u is  $\ldots \ldots$
- 5. Let B = B(a, r) be an *n*-ball in  $\mathbb{R}^n$ . Then  $\partial B = \dots$

## Part B

- 1. Prove that the union of a countable collection of measurable sets is measurable.
- 2. Let f be a bounded measurable function on a set of finite measure E. Then f is integrable over E.
- 3. Assume that g(0+) exists and suppose that for some  $\delta > 0$  the Lebesgue integral  $\int_0^{\delta} \frac{g(t) g(0+)}{t} dt$  exists. Prove that  $\lim_{n \to \infty} \frac{2}{\pi} \int_0^{\delta} g(t) \frac{\sin \alpha t}{t} dt = g(0+)$ .
- 4. Let f = u + iv. Show that Cauchy-Riemann equations along with differentiability of u and v, imply that f'(c).
- 5. Let f be a real valued function with continuous second –order partial derivatives at a stationary point a in  $\mathbb{R}^2$ . Let  $A = D_{1,1}f(a)$ ,  $B = D_{1,2}f(a)$ ,  $C = D_{2,2}f(a)$  and let  $\Delta = det \begin{bmatrix} A & B \\ B & C \end{bmatrix} = AC B'$ .

Then prove that a) If  $\Delta > 0$  and A > 0, f has a relative minimum at a.

- b) If  $\Delta > 0$  and A < 0, f has a relative maximum at a.
- c) If  $\Delta < 0$ , **f** has a saddle point at **a**.

# Part C

- 1. Prove that the outer measure of an integral is its length.
- 2. State and prove Monotone convergence theorem.
- 3. State and Prove Riesz-Fischer theorem.
- 4. State and prove mean-valued theorem for vector-valued functions.
- 5. Assume  $f = (f_1, f_2, ..., f_n) \in C'$  on an open set in  $\mathbb{R}^n$ , and let T = f(S). If the Jacobian determinant  $J_r(a) \neq 0$  for some point a in S, then prove that there are two open sets  $X \subseteq S$  and  $Y \subseteq T$  and a uniquely determined function g such that
  - a)  $a \in X$  and  $f(x) \in Y$ ,
  - b) Y = f(X),
  - c) f is one-to-one on X,
  - d) g is defined on Y, g(Y) = X and g(f(x)) = x for every x in X,
  - e)  $g \in C'$  on Y.

Head of the Department Dr. T. Sheeba Helen Course Instructor Dr. M. K. Angel Jebitha

### **Teaching Plan**

6

90

25

75

100

| D | )epartment      |     | : | Ma                  | the  | matics   |               |       |     |          |       |
|---|-----------------|-----|---|---------------------|------|----------|---------------|-------|-----|----------|-------|
| C | Class           |     | : | I M. Sc Mathematics |      |          |               |       |     |          |       |
| T | itle of the Cou | rse | : | Par                 | tial | Differen | tial Equation |       |     |          |       |
| S | emester         |     | : | Π                   |      |          | -             |       |     |          |       |
| C | Course Code     |     | : | MP                  | 232  | CC3      |               |       |     |          |       |
| ſ | Course Code     | т   | т | р                   | G    | Credita  | Inst Hound    | Total |     | Marks    |       |
|   | Course Code     | L   | I | r                   | 3    | Creans   | mst. Hours    | Hours | CIA | External | Total |

### Objectives

MP232CC3

1.To formulate and solve different forms of partial differential equations.

4

2. Solve the related application-oriented problems.

- -

**5** 1

#### **Course Outcomes**

| On the su  | ccessful completion of the course, students will                                                                                                                                                                                             | PSO       | Cognitive |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| be able to | :                                                                                                                                                                                                                                            | Addressed | Level     |
| 1.         | recall the definitions of complete integral, particular integral, and singular integrals.                                                                                                                                                    | PSO-2     | R         |
| 2.         | learn some methods to solve the problems of non-<br>linear first-order partial differential equations.<br>homogeneous and non-homogeneous linear partial<br>differential equations with constant coefficients and<br>solve related problems. | PSO-1     | U         |
| 3.         | analyze the classification of partial differential<br>equations in three independent variables –<br>Cauchy's problem for a second-order partial<br>differential equation.                                                                    | PSO-3     | An        |
| 4.         | solve the boundary value problem for the heat equations and the wave equation.                                                                                                                                                               | PSO-4     | Ар        |
| 5.         | apply the concepts and methods in physical processes like heat transfer and electrostatics.                                                                                                                                                  | PSO-5     | Ap        |

| Unit | Module | e Topic                                                                                    | Teaching<br>Hours | Cognitive<br>level | Pedagogy              | Assessment/<br>Evaluation         |
|------|--------|--------------------------------------------------------------------------------------------|-------------------|--------------------|-----------------------|-----------------------------------|
| Ι    |        | Non -linear par                                                                            | tial differen     | tial equation      | s of first order      |                                   |
|      | 1.     | Introduction                                                                               | 1                 | К3                 | Brainstorming         | Questioning                       |
|      | 2.     | Explanation of terms,<br>compactible system of first<br>order equations                    | 4                 | K3                 | Heuristic<br>Method   | Recall Steps                      |
|      | 3.     | Examples related to compactible system                                                     | 3                 | К3                 | Blended<br>Learning   | Slip Test                         |
|      | 4.     | Explaining Charpit's<br>Method                                                             | 3                 | K4                 | РРТ                   | True or False                     |
|      | 5.     | Example Problems related<br>to charpit's method                                            | 2                 | К3                 | Interactive<br>Method | Peer Discussion<br>with questions |
|      | 6.     | Solving problems using charpit's method                                                    | 3                 | К3                 | Inductive<br>Learning | Short Summary                     |
| П    |        | Homogeneous linear part                                                                    | tial different    | ial equation       | with constant coe     | fficient                          |
|      | 7.     | Homogeneous and non-<br>homogeneous linear<br>equation with constant<br>coefficient        | 1                 | K2                 | Blended<br>Learning   | Questioning                       |
|      | 8.     | Solution of finding<br>homogeneous equation<br>with constant coefficient,<br>Theorem I, II | 2                 | K2                 | Blended<br>Learning   | Proof Narrating                   |
|      | 9.     | Method of finding<br>complementary function                                                | 2                 | К3                 | Flipped<br>Classroom  | Short Answer                      |
|      | 10.    | Working rule for finding<br>complementary function,<br>Alternative working rule            | 2                 | К3                 | Heuristic<br>Method   | MCQ                               |

# Total contact hours: 90 (Including instruction hours, assignments and tests)

|   |     | for finding complementary   |                |                 |                   |                 |  |
|---|-----|-----------------------------|----------------|-----------------|-------------------|-----------------|--|
|   |     | function                    |                |                 |                   |                 |  |
|   | 11  | Examples for finding        | 3              | К3              | Analytic          | Recall Steps    |  |
|   | 11. | Complementary function      |                | 110             | Method            | Recail Steps    |  |
|   |     | General method and          | 2              |                 |                   |                 |  |
|   |     | working rule for finding    |                |                 |                   |                 |  |
|   | 12. | the particular integral of  |                | K3              | PPT               | Relay Race      |  |
|   |     | homogeneous equation and    |                |                 |                   |                 |  |
|   |     | some example                |                |                 |                   |                 |  |
|   | 12  | Examples to find the        | 3              | V2              | Proinctorming     | Match the       |  |
|   | 15. | particular integral         |                | K.J             | Drainstorning     | following       |  |
| ш |     | Non – homogeneous linear p  | artial differe | ential equation | ons with constant | coefficient     |  |
|   |     | Definition, Reducible and   | 3              |                 |                   |                 |  |
|   | 14. | irreducible linear          |                | K3              | Brainstorming     | Questioning     |  |
|   |     | differential operators      |                |                 |                   |                 |  |
|   |     | Reducible and irreducible   | 2              |                 |                   |                 |  |
|   | 15  | linear partial differential |                | W2              | Interactive       |                 |  |
|   | 15. | equations with constant     |                | K)              | Method            | Sup Test        |  |
|   |     | coefficient                 |                |                 |                   | Slip Test       |  |
|   | 10  | Determination of            | 2              | W0              | PPT using         | Trace on False  |  |
|   | 10. | complementary function      |                | K2              | Microsoft 365     | True of Faise   |  |
|   |     | General solution and        | 2              |                 |                   |                 |  |
|   | 17  | particular integral of non- |                | КЭ              | Heuristic         | Peer Discussion |  |
|   | 17. | homogeneous equation and    |                | K2              | Method            | with questions  |  |
|   |     | some examples of type 1     |                |                 |                   |                 |  |
|   |     | Examples of type 2          | 2              |                 | Plandad           | Creating Quiz   |  |
|   | 18. |                             |                | K2              | Learning          | with Group      |  |
|   |     |                             |                |                 | Learning          | Discussion      |  |
|   | 10  | Problems related to type 3  | 2              | V 5             | Blended           |                 |  |
|   | 17. |                             |                | KJ              | Learning          | Nelay Nale      |  |
|   | 20  | Examples related to type 4, | 2              | кэ              | Inductive         | Questioning     |  |
|   | 20. | Miscellaneous examples      |                | 112             | Learning          | Questioning     |  |

|    |         | for the determination of                                                                                              |               |              |                       |               |
|----|---------|-----------------------------------------------------------------------------------------------------------------------|---------------|--------------|-----------------------|---------------|
|    |         | particular integral                                                                                                   |               |              |                       |               |
| IV | Classif | ication of Partial Differentia                                                                                        | l equations o | of second or | der                   | 1             |
|    | 21.     | classification of Partial<br>Differential equations of                                                                | 1             | K1           | Analytic<br>Method    | Quiz          |
|    | 22.     | Classification of P.D.E. in<br>three independent<br>variables                                                         | 2             | K2           | Heuristic<br>Method   | MCQ – Slido   |
|    | 23.     | Cauchy's problem for a second order P.D.E.                                                                            | 3             | К3           | Flipped<br>Classroom  | Slip Test     |
|    | 24.     | Characteristic equation of the second order P.D.E                                                                     | 3             | K4           | Video using<br>Zoom   | Questioning   |
|    | 25.     | Characteristic curves of<br>the second order P.D.E                                                                    | 1             | K5           | Analytic<br>Method    | Slip Test     |
|    | 27.     | Laplace transformation.                                                                                               | 2             | K4           | Heuristic<br>Method   | True or False |
|    | 28.     | Reduction to Canonical (or normal) forms.                                                                             | 3             | K5           | Flipped<br>Classroom  | Presentation  |
| V  |         | Ι                                                                                                                     | Boundary Va   | lue Problem  | 1                     | 1             |
|    | 29.     | A Boundary value<br>problem, Solution by<br>Separation of variables,<br>Solution of one-<br>dimensional wave equation | 2             | K3           | Brainstorming         | Questioning   |
|    | 30.     | D'Alembert's solution,<br>Solution of two-<br>dimensional wave equation                                               | 2             | K3           | Interactive<br>Method | Slip Test     |
|    | 31.     | Vibration of a circular<br>membrane, Examples<br>related to vibration of a<br>circular membrane                       | 3             | K4           | РРТ                   | True or False |

|     | Solution of one            | 2 |    |           |                 |
|-----|----------------------------|---|----|-----------|-----------------|
|     | dimensional heat equation, |   |    | Houristia | Deer Discussion |
| 32. | Problems related to        |   | K4 | Heuristic | Peer Discussion |
|     | solution of one            |   |    | Method    | with questions  |
|     | dimensional heat equation  |   |    |           |                 |
|     | Solution of two            | 3 |    | Blended   | Group           |
| 33. | dimensional Laplace's      |   | K4 | Dicilaca  | Oloup           |
|     | equation                   |   |    | Learning  | Discussion      |
| 24  | Solution of two            | 3 | K2 | Analytic  | MCO             |
| 54. | dimensional heat equation  |   | K3 | Method    | MCQ             |

### Sample questions

### Part A

1. The system of two given PDE is compatible possess ------

(a) no solution (b) Two solution (c) Infinitely many solutions (d) Unique solution

2. If  $u_1, u_2, ..., u_n$  are solution of the homogeneous linear PDE F(D, D') z = 0 then ------is also a solution, where  $C_1, C_2, ..., C_n$  are arbitrary constants.

3. What is the complementary function of the partial differential equation  $(D^2 - D'^2 + D - D')$ 

z =0 is -----.

4. Classify the PDE 2r + 4s + 3t - 2 = 0.

5. What is the D'Alembert's solution for wave equation.

Part-B

- 1. Show that the equations xp = yq and z(xp + yq) = 2xyare compatible and solve them.
- 2. Solve (D D') (D +D') $z = (y+1)e^x$ .
- 3. Solve  $(D^2 DD' 2D'^2 + 2D + 2D')z = \sin(2x + y)$ .
- 4. Explain the classification of a PDE in three independent variables.
- 5. Find the General solution of one –dimensional wave equation  $\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \left( \frac{\partial^2 y}{\partial t^2} \right).$

### Part-C

1. Find a complete integral of  $(p^2 + q^2)^n (q x - p y) = 1$ .

2. Solve  $r + 2s + t = 2 \cos y - x \sin y$ .

3. Solve  $(D+D')(D+D'-2)z = \sin (x+2y)$ .

4. Reduce the equation yr + (x + y) s + xt = 0 to canonical form and hence find its general solution.

5. A thin rectangular plane whose surface is impervious to heat flow has at t =0 an arbitrary distribution of temperature f(x,y). Its four edges x =0, x= a, y=0, y=b is kept at zero temperature. Determine the temperature at a point of the plate as t increases.

### **Teaching Plan**

| Department | : Mathematics |
|------------|---------------|
|------------|---------------|

Class : I M. Sc.

### Title of the Course: Statistical Data Analysis using R Programming

Semester : II

Course Code : MP232EC2

| Course          | L | Т | Р | S | Credits | Inst. | Total |     | Marks    |       |
|-----------------|---|---|---|---|---------|-------|-------|-----|----------|-------|
| Code            |   |   |   |   |         | Hours | Hours | CIA | External | Total |
| <b>MP232EC2</b> | 4 | - | - | - | 3       | 4     | 60    | 25  | 75       | 100   |

### **Pre-requisite:**

Students should know the basic skills of computer.

### Learning Objectives:

- 1. The basics of statistical computing and data analysis
- 2. How to use R for analytical programming

### **Course Outcomes**

| On the | On the success completion of the course, students will be able to: |         |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------|---------|--|--|--|--|--|--|--|
| 1      | recall R and its development history                               | K1      |  |  |  |  |  |  |  |
| 2      | demonstrate how to import export data with R                       | K2 & K4 |  |  |  |  |  |  |  |
| 3      | explain discrete distributions                                     | K3      |  |  |  |  |  |  |  |
| 4      | apply various concepts to write programs in R                      | K3 & K5 |  |  |  |  |  |  |  |
| 5      | apply estimation concepts in R programming                         | K2 & K3 |  |  |  |  |  |  |  |

### Total Contact hours: 60 (Including lectures, assignments and tests)

| Unit | Module    | Торіс             | Teaching<br>hours | Cognitive<br>level | Pedagogy      | Assessment/<br>Evaluation |
|------|-----------|-------------------|-------------------|--------------------|---------------|---------------------------|
| Ι    | Statistic | al Software R     |                   |                    |               |                           |
|      | 1.        | R and its         | 3                 | K1                 | Interactive   | MCQ                       |
|      |           | development       |                   |                    | Method        |                           |
|      |           | history           |                   |                    |               |                           |
|      | 2.        | Structure of R    | 3                 | K2                 | PPT using     | Slip Test                 |
|      |           |                   |                   |                    | Gamma         |                           |
|      | 3.        | Installation of R | 3                 | K4                 | Demonstration | Installation              |
|      |           |                   |                   |                    |               | of R                      |
| II   | Descript  | tive Statistics   |                   |                    |               |                           |
|      | 4.        | Basics of         | 3                 | K2                 | Inquiry based | Questioning               |
|      |           | Descriptive       |                   |                    | learning      |                           |
|      |           | Statistics and    |                   |                    |               |                           |
|      |           | Examples          |                   |                    |               |                           |

|     | 5.      | Excurses: Data<br>Import and Export | 3 | K3 | Blended<br>Learning | Concept<br>Explain |
|-----|---------|-------------------------------------|---|----|---------------------|--------------------|
|     |         | with R                              |   |    | 0                   | 1                  |
|     | 6.      | Import of Intensive                 | 3 | K3 | Hands on            | Code Race          |
|     |         | Care Unit-Dataset                   |   |    | training            |                    |
| III | Colours | and Diagrams                        |   |    |                     |                    |
|     | 7.      | Proper knowledge                    | 3 | K2 | Interactive         | Q & A              |
|     |         | of using colours                    |   |    | Method              |                    |
|     | 8.      | Excursus: Export of                 | 3 | K5 | Flipped             | Create a           |
|     |         | Diagrams                            |   |    | Classroom           | short video        |
|     | 9.      | An overview on                      | 3 | K4 | Brainstorming       | Quiz -             |
|     |         | Diagrams                            |   |    |                     | Kahoot             |
| IV  | Probabi | lity Distributions                  |   |    |                     |                    |
|     | 10.     | Introduction to                     | 2 | K2 | Video using         | Class Test         |
|     |         | Probability                         |   |    | OBS Studio          |                    |
|     |         | Distributions                       |   |    |                     |                    |
|     | 11.     | Discrete                            | 4 | K4 | Spiral              | R code             |
|     |         | Distributions                       |   |    | Learning            | construction       |
|     | 12.     | Continuous                          | 3 | K4 | Problem based       | Assignment         |
|     |         | Distributions                       |   |    | learning            |                    |
| V   | Estimat | ion                                 |   | 1  | T                   | 1                  |
|     | 13.     | Introduction to                     | 2 | K2 | Scaffolded          | Presentation       |
|     |         | Estimation                          |   |    | learning            |                    |
|     | 14.     | Point Estimation in                 | 4 | K3 | Active              | Quiz -             |
|     |         | detail                              |   |    | learning with       | Quizizz            |
|     |         |                                     |   |    | pair                |                    |
|     |         |                                     |   |    | programming         |                    |
|     | 15.     | Point Estimation                    | 3 | K3 | Visualisation       | Short Test         |
|     |         | continued                           |   |    | and simulation      |                    |

### Course Focussing on Employability and Skill Development

# Activities (SD): Create coding for simple problems using R, Presentation depicting a real-life example, Group Discussion, SLO's

Course Focussing on Cross Cutting Issues: -

Assignment: Development of R programme and post in google classroom.

### Sample questions

### Part A

- 1. R is a \_\_\_\_\_ based language.
- 2. Give the other name of population.
  - a) sample b) universe c) explosion
- 3. True or False: The colour need not work everywhere.

- 4. True or False: The values of a random variable are called realisations.
- 5. Statistics is not able to \_\_\_\_\_\_ answer a question.

### Part B

- 1. List the steps to install R programming language.
- 2. Enumerate the steps to import dataset.
- 3. Explain Colours.
- 4. Discuss different types of continuous distributions.
- 5. Write a note on estimation.

### Part C

- 1. Explain in detail R and its development history.
- 2. Give few functions and their descriptions.
- 3. Depict various types of diagrams.
- 4. Introduce probability distributions and discuss different types of discrete distributions in detail.
- 5. What is your understanding of point estimation and how it is applied.

Head of the Department Dr. T. Sheeba Helen Course Instructor Sr. S. Antin Mary

# **Teaching Plan**

| Department          | : | Mathematics         |
|---------------------|---|---------------------|
| Class               | : | I M. Sc Mathematics |
| Title of the Course | : | Mathematical Python |
| Semester            | : | II                  |
| <b>Course Code</b>  | : | <b>MP232EC5</b>     |

|             | т | T | D |         | T           | Total |     | Marks    |       |
|-------------|---|---|---|---------|-------------|-------|-----|----------|-------|
| Course Code | L | 1 | P | Credits | Inst. Hours | Hours | CIA | External | Total |
| MP232EC5    | 3 | - | 1 | 3       | 4           | 60    | 25  | 75       | 100   |

# **Pre-requisite:**

Г

Students should know basic skills of computer

### Learning Objectives:

- 1. To familiarize the students with Python programing for Mathematics.
- 2. To train them to develop programs and create functions for Mathematics in Python.

### **Course outcomes**

-

| On the successful completion of the course, student will be able to: |                                                                                |         |  |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
| 1                                                                    | acquire knowledge on Python and learn to run the program.                      | K1      |  |  |  |  |  |  |
| 2                                                                    | understand and discuss about different data types and flow control statements. | K2 & K4 |  |  |  |  |  |  |
| 3                                                                    | write programs in python using Lists Tuples, Sets and Dictionaries.            | К3      |  |  |  |  |  |  |
| 4                                                                    | understand For and While loops and conditional statements.                     | K3 & K5 |  |  |  |  |  |  |
| 5                                                                    | creates Functions and Arrays in Python.                                        | K2 & K3 |  |  |  |  |  |  |

# **Teaching plan**

# Total Contact hours: 60 (Including lectures, assignments and tests)

| Unit | Module                 | Торіс                                                                               | Teaching<br>Hours | Cognitive<br>level | Pedagogy                   | Assessment/<br>Evaluation                                              |  |  |  |  |
|------|------------------------|-------------------------------------------------------------------------------------|-------------------|--------------------|----------------------------|------------------------------------------------------------------------|--|--|--|--|
| Ι    | Python Getting started |                                                                                     |                   |                    |                            |                                                                        |  |  |  |  |
|      | 1.                     | Introduction and Installing<br>Python                                               | 1                 | K2                 | Demonstration              | Installation of<br>Python                                              |  |  |  |  |
|      | 2.                     | Different Tabs in Jupiter<br>Notebook                                               | 4                 | K2                 | Project based<br>Learning  | Short quiz on<br>different tabs and<br>Jupiter notebook<br>submissions |  |  |  |  |
|      | 3.                     | Starting a New Notebook                                                             | 3                 | K2                 | Blended<br>Learning        | Slip Test                                                              |  |  |  |  |
|      | 4.                     | Magics and Markdown                                                                 | 1                 | K2                 | Interactive<br>Method      | MCQ                                                                    |  |  |  |  |
| Π    | Program                | mming Python                                                                        |                   |                    |                            |                                                                        |  |  |  |  |
|      | 5.                     | Python Data Types –<br>Numbers, Booleans                                            | 3                 | K3 & K6            | PPT using<br>Gamma         | Code Race                                                              |  |  |  |  |
|      | 6.                     | Python Data Types –<br>Strings, Formatting Strings                                  | 3                 | K3 & K6            | Inquiry-based<br>Learning  | Create a code for<br>mathematical<br>problems                          |  |  |  |  |
|      | 7.                     | Python Data Types – Type<br>Conversions, Variable<br>Names                          | 3                 | K3 & K6            | Brainstorming              | Questioning                                                            |  |  |  |  |
|      | 8.                     | Containers - Lists and<br>Tuples                                                    | 3                 | K3 & K6            | Hands-on-<br>training      | Hands-on-coding test                                                   |  |  |  |  |
|      | 9.                     | Containers - Sets and Dictionaries                                                  | 3                 | K3 & K6            | PPT using<br>Microsoft 365 | MCQ                                                                    |  |  |  |  |
|      | 10.                    | Controlling the Flow –<br>Boolean Expressions, If<br>Statements                     | 3                 | K3 & K6            | Problem based<br>Learning  | Statistical analysis<br>on datasets using<br>Python                    |  |  |  |  |
|      | 11.                    | Controlling the Flow –<br>Conditional Expressions:<br>For Loops, While Loops        | 3                 | K3 & K6            | Hands-on-<br>training      | Hands-on-coding test                                                   |  |  |  |  |
|      | 12.                    | Break and Continue, Error<br>Handling with Try-Except,<br>Reading and Writing Files | 3                 | K3 & K6            | Interactive<br>Method      | Questioning                                                            |  |  |  |  |

| III | Packag  | ing and Reusing Code                  |   |            |                                                |                                           |  |  |  |  |  |
|-----|---------|---------------------------------------|---|------------|------------------------------------------------|-------------------------------------------|--|--|--|--|--|
|     | 13.     | Functions                             | 3 | K4         | Flipped<br>Classroom                           | Create a short<br>video                   |  |  |  |  |  |
|     | 14.     | Modules                               | 3 | K4         | Inductive<br>Learning                          | Python code construction                  |  |  |  |  |  |
|     | 15.     | Comprehensions                        | 2 | K4         | Interactive                                    | Questioning                               |  |  |  |  |  |
|     | 16.     | Generator Expressions and Comments    | 1 | <b>K</b> 4 | Brainstorming                                  | Questioning                               |  |  |  |  |  |
| IV  | Numer   | ical Computing                        |   |            |                                                |                                           |  |  |  |  |  |
|     | 17.     | Numpy – Array Creation                | 2 | K3 & K6    | Visualization<br>and Simulation                | Create<br>visualization for<br>Matrix     |  |  |  |  |  |
|     | 18.     | Array Properties                      | 3 | K3 & K6    | Spiral Learning                                | Slip Test                                 |  |  |  |  |  |
|     | 19.     | Array Operations                      | 3 | K3 & K6    | Scaffolded<br>Learning                         | Construction of<br>Code                   |  |  |  |  |  |
|     | 20.     | Array Indexing and Slicing            | 2 | K3 & K6    | Flipped<br>Classroom                           | Presentation                              |  |  |  |  |  |
|     | 21.     | Indexing with Integer<br>Arrays       | 1 | K3 & K6    | Video using<br>Zoom                            | Quiz - Slido                              |  |  |  |  |  |
|     | 22.     | Indexing with Boolean<br>Arrays       | 1 | K3 & K6    | Video using<br>Zoom                            | Quiz - Socrative                          |  |  |  |  |  |
| V   | Differe | ntial Equations                       |   |            |                                                |                                           |  |  |  |  |  |
|     | 23.     | First Order Differential<br>Equations | 2 | K3 & K5    | Inquiry based<br>Learning                      | Coding<br>challenging and<br>competitions |  |  |  |  |  |
|     | 24.     | Higher Order Linear<br>Equations      | 2 | K3 & K5    | Problem based<br>Learning                      | Code Reviews<br>and Peer<br>Assessment    |  |  |  |  |  |
|     | 25.     | Systems of Equations                  | 2 | K3 & K5    | Active<br>Learning with<br>Pair<br>Programming | Debugging and<br>Error-<br>identification |  |  |  |  |  |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development

Activities (SD): Create a code for mathematical problems, Statistical analysis on datasets using Python, Create a short video, Coding challenging and competitions, Debugging and Error-identification

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: Solving first order differential equations, Systems of Equations

#### Sample questions (minimum one question from each unit)

#### Part A

- 1. Which menu bar containing all the functions available in the notebook?
  - (a) Title (b) Menu (c) Tool (d) Cell
- 2. The value of "abcde"[1] is .....
- 3. True or False: The import statement is used to make the variables and functions in a module available for use.
- 4. Match the following.
  - (i). Return an array of evenly spaced integers within a given interval (a) ones
  - (ii). Return a new array of a given shape and type, filled with ones (b) arrange
  - (iii). Return a new array of a given shape and type, filled with zeros (c) zeros
  - (iv). Return an array of evenly spaced numbers over a specified interval d) linspace
- 5. Differential equations of the form  $\frac{dy}{dt} = func(y, t, ...)$  can be solved using .....

#### Part B

- 1. What is Markdown. Explain the use of Markdown with an example.
- 2. Write the uses of bool, int, float, complex and str.
- 3. Generate the Python code for a polynomial with degree 5.
- 4. Create a Python code for  $3 \times 3$  matix.
- 5. Solve the first order differential equation  $\frac{dP}{dt} = kP (M P)$  using Python.

### Part C

- 1. Explain all the tabs in the Jupiter notebook.
- 2. Explain different types of strings with an example.
- 3. Write the functions of Math Module.
- 4. Explain the properties of Array.
- 5. Solve the systems of equations  $\frac{dx}{dt} = x(a py)$  and  $\frac{dy}{dt} = y(-b + qx)$  using Python.

Head of the Department [Dr. T. Sheeba Helen] Course Instructor [Dr. A. Anat Jaslin Jini]

| Department                 | : Mathematics                   |
|----------------------------|---------------------------------|
| Class                      | : I M.Sc.                       |
| <b>Title of the Course</b> | : Introduction to MS Excel 2007 |
| Semester                   | : II                            |
| <b>Course Code</b>         | : MP242SE1                      |

| Course Code | T |   | р  | G | Credita   | Inst Hours  | Total | Marks |          |       |
|-------------|---|---|----|---|-----------|-------------|-------|-------|----------|-------|
| Course Code | L | I | PS | 3 | 5 Creatis | Inst. nours | Hours | CIA   | External | Total |
| MP242SE1    | 4 | - | -  | - | 3         | 4           | 60    | 25    | 75       | 100   |

# Objectives

- 1. To familiarize the students with Excel's basic features.
- 2. To acquire skills for data analysis using MS Excel.

### **Course outcomes**

| On th | e successful completion of the course, students will be able to:          |         |
|-------|---------------------------------------------------------------------------|---------|
| 1.    | understand the Excel interface including the ribbon, worksheets and cells | K2      |
| 2.    | enter and format data effectively including text, numbers and formulas    | K3& K4  |
| 3.    | use basic functions like SUM, AVERAGE and COUNT for simple                | K3 & K4 |
|       | calculations                                                              |         |
| 4.    | manage data effectively through organization, sorting and filtering       | K3 & K4 |
| 5.    | create various chart types including bar charts, line graphs, pie charts, | K4 & K5 |
|       | and scatter plots to visually represent data.                             |         |

| Unit | Module                                                                       | Торіс                                                                                                      | Teaching<br>Hours | Cognitive<br>level | Pedagogy                | Assessment/<br>Evaluation               |
|------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------------|-----------------------------------------|
| Ι    | Gettin                                                                       | g Started with Excel 20                                                                                    | 07                |                    |                         |                                         |
|      | 1.                                                                           | Introduction to Excel<br>2007 User Interface,<br>Title Bar, Office<br>Button , Quick Access<br>Toolbar ,   | 3                 | K2                 | Context Based           | Quiz<br>Questioning in<br>the classroom |
|      | 2.                                                                           | Ribbon, Command<br>Tabs, Contextual<br>Tabs, Command Sets<br>Dialog Box<br>Launchers.                      | 3                 | K2                 | Flipped<br>Classroom    | Oral<br>presentation                    |
|      | 3.                                                                           | Mini Toolbar, Live<br>Preview, Key Tips,<br>Super ToolTips, Name<br>Box , Formula Bar ,<br>Work Area.      | 3                 | К3                 | Lecture method          | MCQ                                     |
|      | 4.                                                                           | Zoom Controls,<br>Creating a New<br>Workbook, Using a<br>Blank Workbook<br>Template, Saving a<br>Workbook. | 3                 | К3                 | Cooperative<br>Learning | Peer Reviews                            |
|      | 5.                                                                           | Closing the Current<br>Workbook, Opening<br>an Existing Workbook<br>,Closing MS Excel.                     | 3                 | К3                 | Context based           | Online<br>Assignment                    |
| Π    | Worki                                                                        | ng with Data and Data                                                                                      | Tables            |                    |                         |                                         |
|      | 6.Introduction, Enter<br>Data using AutoFi<br>AutoFill a Text Ser<br>Series. |                                                                                                            | 3                 | K2                 | Blended<br>Learning     | MCQ                                     |
|      | 7.                                                                           | Creating Your Own<br>Custom List, Using<br>Merge & Center,<br>Turning on Text<br>Wrapping.                 | 3                 | К3                 | Brainstorming           | Group<br>Discussion                     |
|      | 8.                                                                           | Changing Number<br>Formats, Increasing<br>or Decreasing                                                    | 3                 | К3                 | Experimental learning   | Student presentations                   |

# Total Contact hours: 60 (Including lectures, assignments and tests)

|     |                                   | Decimals in<br>Numeric Data.                                                                                                                    |        |    |                          |                |  |  |  |  |  |
|-----|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|--------------------------|----------------|--|--|--|--|--|
|     | Work                              | ing with Data and Data                                                                                                                          | Tablas |    |                          |                |  |  |  |  |  |
| III | working with Data and Data Tables |                                                                                                                                                 |        |    |                          |                |  |  |  |  |  |
|     | 9.                                | Sorting Data, Sorting<br>Data using Some<br>Predefined Criteria,<br>Sorting Data by<br>Defining Custom Sort<br>Criteria.                        | 3      | K3 | Reflexive<br>thinking    | Homework       |  |  |  |  |  |
|     | 10.                               | Filtering Data,<br>Linking Data, Adding<br>a Hyperlink, Editing a<br>Hyperlink, Removing<br>a Hyperlink.                                        | 3      | K3 | Context based            | Oral test.     |  |  |  |  |  |
|     | 11.                               | Creating a Table,<br>Creating a Table from<br>a Blank Cell Range,<br>Creating a Table from<br>an Existing Data<br>Range.                        | 3      | K5 | Project based            | Assignments    |  |  |  |  |  |
|     | 12.                               | Editing a Table,<br>Formatting a<br>Table, Sorting a<br>Table, Filtering a<br>Table                                                             | 3      | K4 | Experimental<br>Learning | Open-Book Test |  |  |  |  |  |
| IV  | Using                             | Formulas and Functions                                                                                                                          | 5      |    |                          |                |  |  |  |  |  |
|     | 13.                               | Introduction,<br>Understanding<br>Formulas, Operators<br>in Excel 2007,<br>Operator Precedence.                                                 | 3      | K2 | Lecture method           | Quiz           |  |  |  |  |  |
|     | 14.                               | Creating a Formula,<br>Editing a Formula,<br>Defining Range<br>Names, Assigning a<br>Range name,<br>Selecting a Range,<br>Editing a range Name. | 3      | K5 | Blended<br>Learning      | Class test     |  |  |  |  |  |
|     | 15.                               | Referencing Ranges<br>in Formulas,<br>Referencing Cells<br>from Other<br>Worksheets.                                                            | 3      | K3 | Integrative<br>teaching  | MCQ            |  |  |  |  |  |
|     | 16.                               | Using Relative and<br>Absolute Cell                                                                                                             | 3      | K3 | Context based            | Peer Review    |  |  |  |  |  |

|   |      | References,<br>Understanding<br>Functions, Some<br>Common Excel<br>Functions.                        |   |    |                         |                                                |
|---|------|------------------------------------------------------------------------------------------------------|---|----|-------------------------|------------------------------------------------|
|   | 17.  | Applying a<br>Function, Editing a<br>Function,<br>Calculating Total of<br>Cell Data with<br>AutoSum. | 3 | K4 | Reflexive<br>thinking   | Brainstorming                                  |
| V | Work | ing with Charts                                                                                      |   |    |                         |                                                |
|   | 18.  | Introduction, Creating<br>a chart, Changing the<br>Chart Layout,<br>Changing the Chart<br>Styles.    | 3 | К5 | Context based           | Surprise test                                  |
|   | 19.  | Changing the Chart<br>Type, Adding a Chart<br>Title, Adding Axis<br>Titles.                          | 3 | К3 | Project Based           | Preparation of<br>Question Bank<br>by students |
|   | 20.  | Adding Data Labels,<br>Adding a Legend,<br>Adding Gridlines.                                         | 3 | K4 | Cooperative<br>learning | Seminar<br>Presentations                       |

Course Focusing on Employability/ Entrepreneurship/ Skill Development: Skill Development Activities (SD): Create a chart from real data, Sorting and filtering Relay, Data Entry and formatting challenge.

Assignment: Working with Charts

### Sample questions (minimum one question from each unit)

### Part A

- 1. What is the Ribbon in Excel 2007?
- 2. What is AutoFill in Excel 2007?
- 3. What is a hyperlink in Excel, and how can it be used?
- 4. What is a cell reference?
- 5. What is a chart in Excel?

### Part B

- 1. Explain the functions of the Quick Access Toolbar and the Office Button in Excel 2007.
- 2. Explain how to create a custom list in Excel 2007.
- 3. Explain how to filter data in Excel 2007.
- 4. Differentiate between relative and absolute cell references in Excel 2007.
- 5. Describe the steps to add a title to an Excel chart.

### Part C

- 1. Describe the Excel 2007 user interface, highlighting the purpose of elements such as the Title Bar, Ribbon, Formula Bar, and Work Area.
- 2. Discuss various ways to enter and format data in Excel 2007, including using AutoFill, text wrapping, and adjusting number formats.
- 3. Describe the process of creating, formatting, and sorting tables in Excel 2007. Include details on using custom sort criteria and linking data.
- 4. Explain the process of creating formulas and using functions in Excel 2007, with examples of common functions like SUM, AVERAGE, and COUNT.
- 5. Discuss how to create and format charts in Excel 2007. Explain how to customize chart layouts, styles, and add elements like data labels and legends.

Head of the Department Dr. T. Sheeba Helen Course Instructor Dr. T. Sheeba Helen

| Department                 | : | Mathematics                          |
|----------------------------|---|--------------------------------------|
| Class                      | : | II M.Sc Mathematics                  |
| <b>Title of the Course</b> | : | Major Core XIII -Functional Analysis |
| Semester                   | : | IV                                   |
| Course Code                | : | MP234CC1                             |

| Course Code | L | Т | Р | Credits | Inst. Hours | Total<br>Hours |     | Marks    |       |
|-------------|---|---|---|---------|-------------|----------------|-----|----------|-------|
|             |   |   |   |         |             | nouis          | CIA | External | Total |
| PM2033      | 6 | - | - | 5       | 6           | 90             | 25  | 75       | 100   |

### Objectives

- 1. To study the three structure theorems of Functional Analysis and to introduce Hilber Spaces and Operator theory.
- 2. To enable the students to pursue research.

### **Course outcomes**

| CO     | Upon completion of this course, the students will be able to:                                                             | PSO<br>addressed | Cognitive level |
|--------|---------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| CO - 1 | Learn and understand the definition of linear space,<br>normed linear space, Banach Space and their examples              | PSO - 1          | K1(R)           |
| CO - 2 | Explain the concept of different properties of Banach<br>Spaces, Hahn Banach theorem                                      | PSO -2           | K2(U)           |
| CO - 3 | Compare different types of operators and their properties, Natural imbedding                                              | PSO - 2          | K3(Ap)          |
| CO - 4 | Explain the ideas needed for open mapping theorem,<br>Open Mapping theorem                                                | PSO - 1          | K5(C)           |
| CO - 5 | Construct the idea of projections, the spectrum of an operator and develop problem solving skills, Matrices, Determinants | PSO - 1          | K3(Ap)          |
| CO - 6 | Learn and understand the definition of Hilbert Spaces<br>,Orthogonal Complements                                          | PSO - 4          | K1(R)           |
| CO - 7 | Explain the concept of the adjoint of an operator,<br>Normal and Unitary operators, Spectral Theory                       | PSO - 2          | K4(An)          |

# **Teaching plan**

# Total Contact hours: 90 (Including lectures, assignments and tests)

| Unit | Modu                                | Торіс                                           | Teaching | Cognitive | Pedagogy                                | Assessment/                                                      |  |  |  |
|------|-------------------------------------|-------------------------------------------------|----------|-----------|-----------------------------------------|------------------------------------------------------------------|--|--|--|
|      | le                                  |                                                 | Hours    | level     | _ • • • • • • • • • • • • • • • • • • • | Evaluation                                                       |  |  |  |
| Ι    | Banach spaces                       |                                                 |          |           |                                         |                                                                  |  |  |  |
|      | 1.                                  | Banach spaces                                   | 4        | K2(U)     | Lecture with<br>Illustration            | Evaluation through slido, MCQ                                    |  |  |  |
|      | 2.                                  | Definition and examples                         | 2        | K1(R)     | Blended<br>classroom                    | Simple definitions,<br>MCQ, Recall steps,<br>Concept definitions |  |  |  |
|      | 3.                                  | Continuous linear<br>transformations            | 4        | K2(U)     | Flipped<br>Classroom                    | Slip Test using Quizziz                                          |  |  |  |
|      | 4.                                  | The Hahn Banach theorem.                        | 5        | K4(An)    | Integrative<br>method                   | Evaluation through short<br>test, Seminar                        |  |  |  |
| II   | The natural imbedding of N into N** |                                                 |          |           |                                         |                                                                  |  |  |  |
|      | 1.                                  | The natural imbedding<br>of N into N**          | 5        | K1(R)     | Group<br>Discussion                     | Questioning                                                      |  |  |  |
|      | 2.                                  | The open mapping theorem                        | 5        | K2(U)     | Integrative<br>method                   | Evaluation through slido                                         |  |  |  |
|      | 3.                                  | The conjugate of an operator.                   | 5        | K4(An)    | Peer<br>Instruction                     | Slip Test using Quizziz                                          |  |  |  |
| III  | Hilbert                             | spaces                                          |          |           |                                         |                                                                  |  |  |  |
|      | 1.                                  | Hilbert spaces                                  | 4        | K1(R)     | Brainstorming                           | Quiz                                                             |  |  |  |
|      | 2.                                  | Definition and properties                       | 4        | K3(Ap)    | Lecture                                 | Concept Explanation                                              |  |  |  |
|      | 3.                                  | Orthogonal<br>complements -<br>Orthonormal sets | 4        | K3(Ap)    | Lecture<br>Discussion                   | Slip Test                                                        |  |  |  |
|      | 4.                                  | The conjugate space                             | 3        | K5(C)     | Lecture                                 | Evaluation through<br>quiz test using quizziz                    |  |  |  |
| IV   | Adjoin                              | t of an operator                                |          |           |                                         |                                                                  |  |  |  |

|   | 1.     | Adjoint of an<br>operator, self adjoint<br>operators | 3 | K2(U)  | Lecture,<br>Introductory<br>session | Evaluation through quiz<br>test using quizziz,<br>Seminar, MCQ, Recall<br>steps |
|---|--------|------------------------------------------------------|---|--------|-------------------------------------|---------------------------------------------------------------------------------|
|   | 2.     | Normal and unitary operators                         | 3 | K1(R)  | Group<br>Discussion                 | Questioning                                                                     |
|   | 3.     | Projections                                          | 3 | K3(Ap) | Lecture with<br>Illustration        | Evaluation through<br>slido, MCQ                                                |
|   | 4.     | Spectral theory -<br>Spectrum of an<br>operator      | 3 | K4(An) | Blended<br>classroom                | Simple definitions,<br>MCQ, Recall steps,<br>Concept definitions                |
|   | 5.     | The spectral theorem                                 | 3 | K2(U)  | Flipped<br>Classroom                | Slip Test using Quizziz                                                         |
| V | Banacl | n Algebras                                           |   |        |                                     |                                                                                 |
|   | 1.     | Banach Algebras: The definition and some examples    | 3 | K2(U)  | Seminar<br>Presentation             | MCQ                                                                             |
|   | 2.     | Regular and singular elements                        | 3 | K2(U)  | Seminar<br>Presentation             | Concept explanations                                                            |
|   | 3.     | Topological divisors<br>of zero                      | 2 | K4(An) | Seminar<br>Presentation             | Evaluation through slido                                                        |
|   | 4.     | The spectrum                                         | 3 | K4(An) | Seminar<br>Presentation             | Questioning                                                                     |
|   | 5.     | The formula for the spectral radius                  | 4 | K3(Ap) | Seminar<br>Presentation             | Slip Test                                                                       |

Course Focussing on Skill Development

Activities (Em/ En/SD): Evaluation through model making Competition

Assignment : Orthonormal sets (PPT)

Seminar Topic: Adjoint of an operator

# Sample questions

### Part A

1. Let x, y be elements of a Hilbert space *H*, such that ||x|| = 3, ||y|| = 4and ||x+y|| = 7. Then ||x-y|| equals:

(a) 1 (b) 2 (c) 3 (d) $\sqrt{2}$ 

2. Choose the correct answer for the following norm  $||T^*T|| =$ 

(a)  $||T^*|| ||T|| (b) ||T||^2$  (c)  $||T^*||^2$  (d)  $||T^2||$ .

- 3. The weak \* topology is weaker than the ......topology.
- 4. Say True or False

The Hilbert cube is compact as a subspace of  $l_2$ 

5.  $(T_1 T_2)^* = \dots$ 

### Part B

- 1. State and prove Holder's inequality.
- 2. State and prove the Closed theorem.
- 3. State and prove the Schwartz inequality.
- 4. Show that a closed linear subspace M of H is invariant under an operator  $T \Leftrightarrow M^{\perp}$  is invariant under T\*.
- 5. Show that if T is normal then each  $M_i$  reduces T.

### Part C

1. State and prove the Hahn Banach Theorem.

2. Show that a closed convex subset C of a Hilbert space H contains a unique vector of smallest norm.

- 3. State and prove the open mapping theorem.
- 4. If T is an operator on H for which  $\langle Tx, x \rangle = 0$ . For all x, prove that T = 0.
- 5. State and prove the spectral theorem.

Head of the Department

### **Course Instructor**

Dr. T. Sheeba Helen

Dr. A. Jancy Vini

### **Teaching Plan**

# **Department:** Mathematics

### Class: II M.Sc. Mathematics

### Title of the Course: Core course XI: Probability Theory Semester: III

### **Course Code: MP234CC2**

| Course   | L | Т | Р | Credits | Inst.<br>Hours | Total<br>Hours | Marks |          |       |
|----------|---|---|---|---------|----------------|----------------|-------|----------|-------|
| Code     |   |   |   |         |                |                | CIA   | External | Total |
| MP234CC2 | 6 | - | - | 5       | 6              | 90             | 25    | 75       | 100   |

# Learning Objectives:

- To upgrade the knowledge of Probability theory
   To solve NET /SET related Probability theory problems

| Course Outcomes |                                                                         |        |  |  |  |  |
|-----------------|-------------------------------------------------------------------------|--------|--|--|--|--|
| On the s        | On the successful completion of the course, students will be able to:   |        |  |  |  |  |
| 1               | recall the basic probability axioms, conditional probability, random    | K1     |  |  |  |  |
|                 | variables, and related concepts                                         |        |  |  |  |  |
| 2               | define Special Mathematical Expectations, The Binomial Distribution,    | K2     |  |  |  |  |
|                 | and The Poisson Distribution.                                           |        |  |  |  |  |
| 3               | define The Exponential, Gamma, and Chi-square Distributions, The        | K2     |  |  |  |  |
|                 | Normal Distribution.                                                    |        |  |  |  |  |
| 4               | study Bivariate Distributions of discrete, and continuous types, The    | K5     |  |  |  |  |
|                 | correlation coefficient, Conditional Distribution, and The Bivariate    |        |  |  |  |  |
|                 | Normal Distribution.                                                    |        |  |  |  |  |
| 5               | discuss Functions of one random variable, Transformations of two random | K3, K4 |  |  |  |  |
|                 | variables, The central limit Theorem, Chebyshve's inequality, and       |        |  |  |  |  |
|                 | convergence in probability, Limiting moment-generating functions.       |        |  |  |  |  |

|      |             |                                     | Teaching     | Cognitive  |               | Assessment/  |  |
|------|-------------|-------------------------------------|--------------|------------|---------------|--------------|--|
| Unit | Module      | Торіс                               | Hours        | level      | Pedagogy      | Evaluation   |  |
|      |             |                                     | nours        |            |               | L'valuation  |  |
| Ι    | Probability |                                     |              |            |               |              |  |
|      | 1.          | Properties of Probability           | 4            | K1, K2     | Recall the    | Questioning  |  |
|      |             |                                     |              | ,          | basic         |              |  |
|      |             |                                     |              |            | definitions   |              |  |
|      | 2.          | Methods of enumeration              | 4            | K4, K5     | Lecture with  | Summarize    |  |
|      |             |                                     |              |            | illustration  | the concepts |  |
|      | 3.          | Conditional Probability             | 5            | K2, K5     | Illustrative  | Questioning  |  |
|      |             |                                     |              |            | Method        |              |  |
|      | 4.          | Independence Events, Baye's         | 5            | K2, K5     | Interactive   | Question     |  |
|      |             | Theorem                             |              |            | teaching      | and answer   |  |
| II   |             | Discr                               | ete Distribu | utions     |               |              |  |
|      | 1           | Random Variables of the             | 6            | <b>K</b> 1 | Flipped       | Questioning  |  |
|      | 1.          | Discrete Type                       | 0            | IX1        | classroom     | Questioning  |  |
|      |             |                                     | 6            | 1/2        | <b>D</b>      | 01: / /      |  |
|      | 2.          | Mathematical Expectation,           | 6            | K2         | Discussion    | Slip test    |  |
|      |             | Expectation                         |              |            |               |              |  |
|      |             |                                     |              |            |               |              |  |
|      | 3.          | The Binomial Distribution, The      | 6            | K2         | Inquiry based | Q & A        |  |
|      |             | Poisson Distribution                |              |            | teaching      |              |  |
| III  |             | Contin                              | uous Distri  | butions    |               |              |  |
|      | 1.          | Random variables of continuous type | 6            | K2         | Lecture       | Short test   |  |
|      | 2.          | The Exponential, Gamma, and         | 6            | K3, K4     | Flipped       | Problem-     |  |
|      |             | Chi-square Distributions            |              |            | Classroom     | solving      |  |
|      | 3.          | The Normal Distribution             | 6            | K3, K4     | Brainstorming | Short test   |  |
| IV   |             | Bivar                               | iate Distrib | utions     | ı             | <u>.</u>     |  |
|      | 1.          | Bivariate Distributions of          | 3            | K1 & K2    | Collaborative | Ouiz         |  |
|      |             | discrete type                       |              |            | group work    |              |  |
|      | 2           | The correlation coefficient         | 2            | <b>V</b> 2 | Looturo       | True/Felce   |  |
|      | ۷.          | The correlation coefficient         | 5            | КJ         | Lecture       | True/raise   |  |

# Total contact hours: 90 (Including instruction hours, assignments, and tests)

|   | 3. | The Conditional Distribution                                                           | 4           | K2          | Lecture                                 | Concept<br>Explanation  |
|---|----|----------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------------|-------------------------|
|   | 4. | Bivariate Distributions of continuous type                                             | 4           | K3, K4      | Lecture with chalk and talk             | Slip Test               |
|   | 5. | Bivariate Normal Distribution                                                          | 4           | K2, K4      | Lecture<br>Discussion                   | Q& A                    |
| V |    | Distributions of fu                                                                    | inctions of | Random vari | ables                                   |                         |
|   | 1. | Functions of one random variable                                                       | 3           | K2          | Seminar<br>Presentation                 | Explain                 |
|   | 2. | Transformations of two<br>random variable, Several<br>random variables                 | 5           | K2, K4      | Lecture with<br>Comparative<br>Analysis | Concept<br>explanations |
|   | 3. | The central limit Theorem,<br>Chebyshve's inequality and<br>convergence in probability | 6           | K3, K4      | Lecture with illustration               | Questioning             |
|   | 4. | Limiting moment generating functions                                                   | 4           | K2          | Seminar<br>Presentation                 | Recall steps            |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: Skill Development

Activities (Em/ En/SD): Problem-solving, Seminar Presentation, Group Discussion

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): -

Activities related to Cross Cutting Issues: -

Assignment: Solving Exercise Problems

Seminar Topic: Transformations of two random variable, Several random variables and Limiting moment generating functions

### **Sample questions**

### Part A

1. If two events A and B are independent, which of the following is true?

a)  $P(A \cap B) = P(A) + P(B)$ b)  $P(A \cap B) = P(A) * P(B)$ c) P(A | B) = 0d)  $P(A \cup B) = P(A) * P(B)$ 

2. Which of the following describes a discrete random variable?

| a) Temperature measurements      | b) Height of individuals         |
|----------------------------------|----------------------------------|
| c) Number of students in a class | d) Time taken to complete a task |

3. For a binomial distribution, if n = 10 and p = 0.5, what is the expected value?

a) 2.5 b) 5 c) 10 d) 15

4. Define the moment-generating function.

5. The central limit theorem states that the distribution of sample means approaches a normal distribution as:

| a) Sample size decreases | b) Variance increases |
|--------------------------|-----------------------|
| c) Sample size increases | d) Mean decreases     |

### Part B

1. Calculate  $P(A \cup B)$  if P(A) = 0.4, P(B) = 0.5, and  $P(A \cap B) = 0.2$ .

2. If P(A) = 0.5 and P(B|A) = 0.7, find  $P(A \cap B)$ .

3. Using the multiplication rule, find the probability of drawing two consecutive hearts from a deck without replacement.

4. Calculate the variance of the binomial distribution with n = 10 and p = 0.5.

5. Given a normal distribution with mean 10 and variance 4, find the probability that a randomly selected value is less than 12.

### Part C

1. State and prove Baye's theorem.

2. Explain Chebyshev's Inequality and solve a related problem to demonstrate its use in probability.

3. Solve: A survey shows that 60% of people like coffee, 50% like tea, and 30% like both. What is the probability that a randomly selected person likes either coffee or tea?

4. Solve: For a random variable X with P(X = 1) = 0.2, P(X = 2) = 0.5, and P(X = 3) = 0.3, calculate E(X) and Var(X).

5. State and prove the central limit theorem

Head of the Department

Course Instructor Dr. J. Befija Minnie

Dr. T. Sheeba Helen

# **TEACHING PLAN**

**Department:** Mathematics

Class: II M. Sc Mathematics

Title of the Course: Core Course XII: Numerical Analysis

Semester: IV

Course Code: MP234CC3

| Course Code | L | Т | Р | S | Credits | Inst. | Total<br>Hours |     | Marks    |       |
|-------------|---|---|---|---|---------|-------|----------------|-----|----------|-------|
|             |   |   |   |   |         | Hours |                | CIA | External | Total |
| MP234CC3    | 5 | - | - | - | 5       | 6     | 90             | 25  | 75       | 100   |

#### Learning Objectives:

- 1. Understand fundamental numerical analysis techniques and their applications.
- 2. Develop proficiency in implementing numerical algorithms using computational tools.

| CO     | Upon completion of this course the students                       | PSO       | СТ                  |
|--------|-------------------------------------------------------------------|-----------|---------------------|
| CO     | will be able to:                                                  | addressed | CL                  |
| CO - 1 | recall and list basic numerical methods covered in the course,    | PSO - 1   | K1(R)               |
|        | including root-finding algorithms and interpolation techniques.   |           |                     |
| CO - 2 | understand the principles behind key numerical algorithms such as | PSO - 2   | $K_2(U)$            |
|        | Newton's method, Gaussian elimination, and Runge-Kutta methods.   |           |                     |
| CO - 3 | apply numerical methods to solve algebraic equations, interpolate | PSO - 3   | K <sub>3</sub> (Ap) |
|        | data points, fit curves to data sets, and solve systems of linear |           |                     |
|        | equations.                                                        |           |                     |
| CO - 4 | analyse the accuracy, convergence, and stability of numerical     | PSO - 3   | K <sub>4</sub> (An) |
|        | solutions obtained using different techniques.                    |           |                     |
| CO - 5 | evaluate the suitability and effectiveness of various numerical   | PSO - 2   | K5(E)               |
|        | methods for specific mathematical problems based on computational |           |                     |
|        | efficiency and solution quality.                                  |           |                     |

#### **Course Outcome**

# **Teaching plan**

Total Contact hours: 90 (Including lectures, assignments, and tests)

| Unit | Module | Торіс                                                                                                                     | Teach<br>ing<br>Hours | Cogniti<br>ve level | Pedagogy                                                                            | Assessment/<br>Evaluation                                |
|------|--------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|
|      |        |                                                                                                                           |                       |                     |                                                                                     |                                                          |
| Ι    | 1.     | Solution of Algebraic and<br>Transcendental Equations -<br>Introduction –Iteration<br>Method                              | 5                     | K <sub>2</sub> (U)  | Introductory session,<br>Group Discussion. PPT.                                     | Evaluation<br>through short<br>test, MCQ,<br>True/False. |
|      | 2.     | Newton-Raphson Method-<br>Ramanujan's Method                                                                              | 5                     | K <sub>3</sub> (Ap) | Transmissive method using<br>Chalk and talk, Problem-<br>solving, Group Discussion. | Simple<br>definitions,<br>Recall steps,                  |
|      | 3.     | Secant Method - Muller's<br>Method.                                                                                       | 5                     | K <sub>3</sub> (Ap) | Transmissive method using<br>Chalk and talk, Problem-<br>solving, Group Discussion. | solve problems,<br>and explain                           |
| II   | 1.     | Differences of a polynomial -<br>Newton's formulae for<br>Interpolation - Central<br>Difference Interpolation<br>formulae | 5                     | K <sub>1</sub> (R)  | Problem-solving,<br>Demonstration.                                                  | MCQ,<br>True/False.                                      |
|      | 2.     | Gauss's central difference<br>formulae - Stirling's formula<br>- Bessel's formula                                         | 5                     | K <sub>2</sub> (U)  | Problem-solving, Group<br>Peer tutoring.                                            | Evaluation<br>through short<br>tests.                    |
|      | 3.     | Everett's formula - Relation<br>between Bessel's and<br>Everett's formulae - Practical<br>Interpolation.                  | 5                     | K <sub>3</sub> (Ap) | Transmissive method using videos, Problem-solving.                                  | Presentations                                            |
| III  | 1.     | Least squares and Fourier<br>Transforms - Introduction -<br>Least squares Curve Fitting                                   | 5                     | K <sub>2</sub> (U)  | Transmissive method using videos.                                                   | Evaluation<br>through short<br>tests.                    |
|      | 2.     | Procedure Fitting a straight<br>line - Multiple Linear Least<br>squares                                                   | 5                     | K <sub>2</sub> (U)  | Introductory session,<br>Group Discussion.                                          | MCQ,<br>True/False.                                      |
|      | 3.     | Linearization of Nonlinear<br>laws - Curve fitting by<br>Polynomials.                                                     | 5                     | K <sub>4</sub> (An) | PPT, Review.                                                                        | Evaluation<br>through short<br>tests, Seminar.           |

| IV | 1. | Numerical Linear Algebra -<br>Introduction - Triangular<br>Matrices - LU<br>Decomposition of a matrix -           | 3 | K <sub>1</sub> (R)  | Peer tutoring, Transmissive method using videos.                                    | Evaluation<br>through short<br>tests.          |
|----|----|-------------------------------------------------------------------------------------------------------------------|---|---------------------|-------------------------------------------------------------------------------------|------------------------------------------------|
|    | 2. | Solution of Linear systems -<br>Direct Methods - Gauss<br>elimination                                             | 4 | K <sub>2</sub> (U)  | Transmissive method using<br>Chalk and talk, Problem-<br>solving.                   | Concept<br>definitions                         |
|    | 3. | Necessity for Pivoting - Gauss<br>- Jordan method -<br>Modification of the Gauss<br>method to compute the inverse | 4 | K <sub>3</sub> (Ap) | Problem-solving, Group<br>Discussion.                                               | MCQ,<br>True/False.                            |
|    | 4. | LU Decomposition method -<br>Solution of Linear systems -<br>Iterative methods.                                   | 4 | K4(An)              | Transmissive method using<br>Chalk and talk, Problem-<br>solving, Group Discussion. | Concept<br>definitions,<br>Seminar.            |
| V  | 1. | Numerical Solution of<br>Ordinary Differential<br>Equations - Solution by<br>Taylor's series                      | 5 | K <sub>2</sub> (U)  | Peer tutoring, Lectures using videos.                                               | Evaluation<br>through short<br>tests, Seminar. |
|    | 2. | Euler's method - Runge -<br>Kutta methods - II order and<br>IV order                                              | 5 | K <sub>3</sub> (Ap) | Problem-solving, PPT.                                                               | Seminar.                                       |
|    | 3. | Numerical Integration –<br>Trapezoidal Rule –<br>Simpson's 1/3– Rule -<br>Simpson's 3/8– Rule.                    | 5 | K4(An)              | Transmissive method using<br>Chalk and talk, Problem-<br>solving, Group Discussion. | Concept<br>explanations,<br>Seminar.           |

Course Focussing on Employability/ Entrepreneurship/ Skill Development: (Mention)

Activities (Em/ En/SD): Online Assignments, Open Book Test, and Group Discussions

Course Focussing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): (Mention)

Activities related to Cross Cutting Issues:

Assignment: Solution of Algebraic and Transcendental Equations -Introduction; Iteration Method (Online)

Seminar Topic: Differences of a polynomial - Newton's formulae for Interpolation - Central Difference Interpolation formulae.

Sample questions (minimum one question from each unit)

### Unit I:

Part A: True or False: Every Polynomial equation of the n<sup>th</sup> degree has n and only n roots.

**Part B:** Find a real root of equation  $x^3 = 1 - x^2$  on the interval [0, 1] with an accuracy of 10<sup>-4</sup>

**Part C:** Use the Iterative method to find the real root of the equation  $\sin x = 10(x-1)$ . Correct to three decimal places.

Unit II:

**Part A:** Everett's formula will be easier to apply, since it uses only the -----order differences.

Part B: Derive the relation between Bessel's formula and Everett's formula.

Part C: Derive Bessel's formula.

Unit III:

Part A: True or False: The given data may not always follow a linear relationship.

**Part B:** Fit the second-degree parabola  $y = a + bx + cx^2$  to the data (x<sub>i</sub>, y<sub>i</sub>); (1,0.63), (3, 2.05), (4, 4.08), (6, 10.78)

Part C: Explain Linearization of Nonlinear laws with example.

Unit IV:

Part A: Define the norm of a vector.

**Part B:** Factorize the matrix  $A = \begin{pmatrix} -1 & 2 & 3 \\ 3 & 1 & 0 \\ 0 & 5 & 3 \end{pmatrix}$  in to LU form.

Part C: Derive a LU decomposition of a matrix.

Unit V:

Part A: The Second order Runge - Kutta formula is ------

Part B: Derive Trapezoidal rule.

**Part C:** Derive Simpson's 3/8 <sup>th</sup> rule.

Head of the Department: Dr. T. Sheeba Helen

Course Instructor: Mrs. J C Mahizha

### **Teaching Plan**

| Department          | : | Mathematics                           |
|---------------------|---|---------------------------------------|
| Class               | : | II M. Sc Mathematics                  |
| Title of the Course | : | ELECTIVE COURSE VI :b) FOUNDATIONS OF |
|                     |   | COMPUTER NETWORKING                   |
| Semester            | : | IV                                    |
| <b>Course Code</b>  | : | MP234EC2                              |

| Course          | т | т | р | G | Credita | Inst. | Total | Marks |          |       |
|-----------------|---|---|---|---|---------|-------|-------|-------|----------|-------|
| Code            | L | I | r | 3 | Creatis | Hours | Hours | CIA   | External | Total |
| <b>MP234EC2</b> | 4 | - | - | - | 3       | 4     | 60    | 25    | 75       | 100   |

### **Pre-requisite:**

- 1. Basic understanding of computer science fundamentals, including data structures and algorithms.
- 2. Basic networking concepts such as IP addressing, routing, and switching.

#### **Learning Objectives:**

- 1. To understand the fundamental principles and components of network hardware, reference models, and protocols.
- 2. To analyze and apply various networking concepts such as data link layer design, routing algorithms, congestion control, and transport layer protocols.

#### **Course Outcomes**

| On the | successful completion of the course, students will be able to:                                                                                                                                                             |        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1      | demonstrate a thorough understanding of network hardware, reference models (such as OSI and TCP/IP), and the architecture of the Public Switched Telephone Network (PSTN).                                                 | K2     |
| 2      | describe the architecture and services of the application layer,<br>analyze protocols such as HTTP for web communication, and<br>understand the principles of streaming media and real-time<br>conferencing over networks. | K2, K4 |
| 3      | design data link layer protocols, analyze error detection and<br>correction techniques, and implement routing algorithms for<br>efficient data transmission.                                                               | K3, K4 |
| 4      | develop skills in identifying congestion control issues, apply<br>appropriate congestion control algorithms, and implement<br>traffic-aware routing strategies to optimize network<br>performance.                         | K3, K4 |
| 5      | demonstrate proficiency in analyzing and implementing<br>transport layer protocols, particularly TCP, including connection<br>establishment, data transfer, and connection release<br>mechanisms.                          | K4     |

K2 - Understand; K3 – Apply; K4 - Analyse;

# Teaching plan

# Total Contact Hours: 60 (Including lectures, assignments and tests)

| Unit | Module                          | Торіс                                                                | Teaching<br>Hours | Cognitive<br>level | Pedagogy      | Assessment/<br>Evaluation |  |  |  |  |  |
|------|---------------------------------|----------------------------------------------------------------------|-------------------|--------------------|---------------|---------------------------|--|--|--|--|--|
| Ι    | Introduction – Network Hardware |                                                                      |                   |                    |               |                           |  |  |  |  |  |
|      |                                 | Introduction: Local                                                  |                   |                    | Interactive   | Class                     |  |  |  |  |  |
|      | 1                               | Area Networks –                                                      | 3                 | K2                 | Diagrams      | Discussions               |  |  |  |  |  |
|      |                                 | Wide Area Networks.                                                  |                   |                    |               |                           |  |  |  |  |  |
|      |                                 | Reference Models:                                                    |                   |                    | Concept       | Concept Map               |  |  |  |  |  |
|      | 2                               | The OSI Reference                                                    | 2                 | КЭ                 | Mapping       | Evaluation                |  |  |  |  |  |
|      | 2                               | Model – The TCP/IP                                                   | 5                 | <b>K</b> 2         |               |                           |  |  |  |  |  |
|      |                                 | Reference Model                                                      |                   |                    |               |                           |  |  |  |  |  |
|      |                                 | The Physical Layer –                                                 |                   |                    | Illustrative  | Diagram                   |  |  |  |  |  |
|      | 3                               | Guided Transmission                                                  | 3                 | K2                 | Method        | Labeling Tests            |  |  |  |  |  |
|      |                                 | Media                                                                |                   |                    |               |                           |  |  |  |  |  |
|      |                                 | Magnetic Media –                                                     |                   |                    | Case-Based    | Case Study                |  |  |  |  |  |
|      | 4                               | Twister Pairs –<br>Coaxial Cable –<br>Power Lines – Fiber<br>Optics. | 3                 | K2                 | Learning      | Reports                   |  |  |  |  |  |
| II   |                                 | The Pul                                                              | blic Switched     | l Telephone N      | Network       |                           |  |  |  |  |  |
|      |                                 | Structure of the                                                     |                   |                    | Flipped       | Peer                      |  |  |  |  |  |
|      |                                 | Telephone System –                                                   |                   |                    | Classroom,    | Assessments               |  |  |  |  |  |
|      | 1                               | The Local Loop:                                                      | 3                 | K3                 |               |                           |  |  |  |  |  |
|      |                                 | Modems, ADSL and                                                     |                   |                    |               |                           |  |  |  |  |  |
|      |                                 | Fiber – Switching.                                                   |                   |                    |               |                           |  |  |  |  |  |
|      |                                 | The Data Link Layer:                                                 |                   |                    | Demonstration | Class                     |  |  |  |  |  |
|      | 2                               | Data Link Layer                                                      | 2                 | V 4                | Method        | Discussions               |  |  |  |  |  |
|      |                                 | Design Issues:                                                       | 5                 | <b>N</b> 4         |               |                           |  |  |  |  |  |
|      |                                 | Framing                                                              |                   |                    |               |                           |  |  |  |  |  |

|             |                | Error Detection and                    |             |             | Problem-Based | Group Projects  |
|-------------|----------------|----------------------------------------|-------------|-------------|---------------|-----------------|
|             |                | Correction: Error-                     |             |             | Learning      |                 |
|             | 3              | Correcting Codes -                     | 3           | K3          | C C           |                 |
|             |                |                                        |             |             |               |                 |
|             |                | Error-Detecting Codes                  |             |             |               |                 |
|             |                | Sliding Window                         |             |             | Inductive     | Questioning     |
|             |                | Protocols: A One-Bit<br>Sliding Window |             |             | Learning      |                 |
|             | 4              | Protocol – A Protocol                  | 3           | K3          |               |                 |
|             |                | using Go-Back – A                      |             |             |               |                 |
|             |                | Protocol using                         |             |             |               |                 |
|             |                | Selective Repeat.                      |             |             |               |                 |
| III         |                | The Network                            | Layer – Net | work Layer  | Design Issues |                 |
|             |                | Store-and-Forward                      |             |             | Collaborative | Evaluation      |
|             | 1              | Packet Switching                       | 3           | K2          | Learning      | through short   |
|             |                |                                        |             |             |               | test            |
|             |                | Routing Algorithms:                    |             |             | Gamification  | Gamified        |
|             | 2              | Shortest Path                          | 3           | K/          | Gammeation    |                 |
|             | 2              | Algorithm – Distance                   | 5           | Λ4          |               | Challenges      |
|             | Vector Routing |                                        |             |             |               |                 |
|             |                | Congestion Control                     |             |             | Interactive   | Slip Test       |
|             | 3              | Algorithms:<br>Approaches to           | 3           | K3          | Lectures      |                 |
|             |                | Congestion Control                     |             |             |               |                 |
|             |                | Traffic-Aware                          | 2           | WO          | Gamification  | Quiz            |
|             | 4              | Routing.                               | 3           | K3          |               | Competition     |
| <b>TT</b> 7 |                |                                        |             |             |               | 1               |
| IV          |                | The Tran                               | sport Layer | – Congestio | on Control    |                 |
|             |                | Desirable Bandwidth                    |             |             | Interactive   | Peer Discussion |
|             | 1              | Allocation –                           | 3           | К3          | Method        | with questions  |
|             | 1              | Sending Rate –                         | 5           | 113         |               | -               |
|             |                | Wireless Issues.                       |             |             |               |                 |
|             |                | The Internet Transport                 |             |             | Flipped       | Practical Exams |
|             | 2              | Protocols:Introduction                 | 3           | K2          | Classroom     |                 |
|             |                | to TCP – The TCP                       |             |             |               |                 |
|             |                | The TCP Segment                        |             |             | Hands-on      | Evaluation      |
|             |                | Header – TCP                           |             |             | L             |                 |
|             | 3              | Connection                             | 3           | K4          | Learning      | through short   |
|             |                | Establishment – TCP                    |             |             |               | test            |
|             |                | Connection Release.                    |             |             |               |                 |

| V |   | The Ap                                                                                                                | plication Lay | ver – Electro | nic Mail                  |                                   |
|---|---|-----------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------------------|-----------------------------------|
|   | 1 | Architecture and<br>Services – The User<br>Agent – Message<br>Formats – Message<br>Transfer – Final<br>Delivery       | 3             | K2            | Collaborative<br>Learning | Peer Reviews                      |
|   | 2 | The World Wide Web:<br>Architectural<br>Overview – Static<br>Web Pages – Dynamic<br>Web Pages and Web<br>Applications | 3             | K3            | Interactive<br>Learning   | Web<br>Development<br>Projects    |
|   | 3 | HTTP-The Hyper Text<br>Transfer Protocol –<br>The Mobile Web –<br>Web Search                                          | 3             | К3            | Blended<br>Learning       | Slip Test                         |
|   | 4 | Streaming Audio and<br>Video: Digital Audio –<br>Digital Video                                                        | 3             | K4            | Flipped<br>Classroom      | Presentations                     |
|   | 5 | Streaming Stored<br>Media – Streaming<br>Live Media – Real-<br>Time Conferencing.                                     | 3             | K4            | Experiential<br>Learning  | Practical Tests,<br>Presentations |

Course Focussing on Skill Development.

Activities (Em/ En/SD): Evaluation through short test, Seminar

Assignment: Exploring Networking Technologies: From LANs to the Web and Streaming Media.

Seminar Topic: The Network Layer – Network Layer Design Issues

### Sample questions

### Part A

- 1. Which layer in the OSI model is responsible for error control and flow control?
  - a) Physical Layer b) Data Link Layer
  - c) Network Layer d) Application Layer
- 2. Which component of the telephone system is known as the "last mile"?
  - a) Modem b) Local loop
  - c) Toll office d) DSLAM
- 3. The shortest path algorithm always chooses the path with the fewest hops between nodes.
- 4. What is the function of the TCP three-way handshake?
  - a) To terminate a connection securely.
  - b) To establish a reliable connection between sender and receiver.
  - c) To ensure all packets are sent in the correct order.
  - d) To check network bandwidth before transmission.
- 5. What is the main purpose of MIME in email?
  - a) To provide a standard format for text-only messages
  - b) To allow multimedia content like images and audio to be sent in emails
  - c) To enable the encryption of email messages
  - d) To allow users to access their email on mobile devices

#### Part B

- 1. Explain the characteristics of Local Area Networks (LANs) and discuss their typical uses.
- **2.** Explain the difference between circuit switching and packet switching in the telephone network.
- 3. What is the distance vector routing algorithm, and how does it operate?

- 4. Describe the AIMD control law used in TCP for congestion control.
- 5. Describe the architecture of the World Wide Web.

### Part C

- Discuss guided transmission media used in computer networks, including twisted pair, coaxial cable, and fiber optics. Describe their characteristics, advantages, and disadvantages.
- 2. Explain ADSL technology and its advantages over traditional dial-up modems.
- **3.** Explain Dijkstra's shortest path algorithm and discuss its application in routing.
- **4.** Describe TCP connection establishment and termination using the three-way handshake and four-way handshake.
- Describe the process of message transfer in an email system using SMTP. Explain how IMAP and POP3 differ from SMTP.

### Head of the Department

#### **Course Instructor**

Dr. T. Sheeba Helen

#### Dr. V. Sujin Flower

| Department          | : Mathematics                          |
|---------------------|----------------------------------------|
| Class               | : II M.Sc Mathematics                  |
| Title of the Course | : Core Course VII - STOCHASTIC PROCESS |
| Semester            | :IV                                    |
| <b>Course Code</b>  | : MP234EC6                             |

| Course Code | L | Т | Р | S | Credits | Inst. | Total<br>Hours | Marks      |          |       |
|-------------|---|---|---|---|---------|-------|----------------|------------|----------|-------|
|             |   |   |   |   |         | Hours | nours          | CIA Extern | External | Total |
| MP234EC6    | 3 | 1 | - | - | 3       | 4     | 60             | 25         | 75       | 100   |

# Pre-requisite:

Basic Probability Theory

### **Learning Objectives:**

1.To understand the stochastic models.

**2.**To relate the models studied to real life probabilistic situations.

### **Course Outcomes**

|    | On the successful completion of the course, students will be able to:                   |    |  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| 1. | recall the basic results of Markov Chains as Graphs- Higher Transition<br>Probabilities | K1 |  |  |  |  |  |  |
| 2. | understand Stability of a Markov System                                                 | K2 |  |  |  |  |  |  |
| 3. | apply Generalisations of Poison Process-Poison Process in Higher<br>Dimensions-         | К3 |  |  |  |  |  |  |
| 4. | determine Discrete Stat Space-Introduction-Chapman-Kolmogorov<br>Equations              | K4 |  |  |  |  |  |  |
| 5. | calculate the possible partitions of a given number and draw Ferrer's graph             | К5 |  |  |  |  |  |  |

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

# **Teaching Plan**

# Total contact hours: 60 (Including instruction hours, assignments and tests)

|      |        | Teachin Cognitive level                                                                                                             |         |         |                        |                            |  |  |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------------------------|----------------------------|--|--|
| Unit | Module | Торіс                                                                                                                               | g       |         | Pedagogy               | Fyaluation                 |  |  |
|      |        |                                                                                                                                     | Hours   |         |                        | Evaluation                 |  |  |
| Ι    |        |                                                                                                                                     | Group   | S.      |                        | <u> </u>                   |  |  |
|      | 1.     | An Introduction-Specification of<br>Stochastic Processes-:<br>Communication Relations-                                              | 2       | K1      | Brainstorming          | Evaluation<br>through test |  |  |
|      | 2.     | Definition and Examples-<br>Transition Matrix (or Matrix of<br>Transition Probabilities)- Order<br>of a Markov Chain                | 3       | K1 & K6 | Illustrative<br>Method | Q&A                        |  |  |
|      | 3.     | Markov Chains as Graphs-<br>Higher Transition Probabilities-<br>Generalisation of Independent<br>Bernoulli Trials                   | 2       | K1 & K6 | Content based          | Open Book<br>Assignment    |  |  |
|      | 4.     | Sequence of Chain-Dependent<br>Trials-Markov-Bernoulli Chain-<br>Correlated Random Walk-<br>Classification of States and<br>Chains- | 2       | K2 & K6 | Chalk and Talk         | Quiz                       |  |  |
|      | 5.     | Class Property-Classification of<br>Chains-Classification of States:<br>Transient and<br>Persistent(Recurrent) States               | 2       | K2 & K6 | Illustrative<br>method | Group<br>Discussion        |  |  |
|      | 6.     | Persistent(Recurrent) States                                                                                                        | 1       | K2 & K6 | Content based          | Q&A                        |  |  |
| II   |        |                                                                                                                                     | Sub Gro | ups     |                        |                            |  |  |
|      | 1.     | Determination of Higher<br>Transition Probabilities                                                                                 | 2       | K1 & K2 | Brainstorming          | Test                       |  |  |
|      | 2.     | Computation of the Equilibrium<br>Probalities-Graph Theoretic<br>Approach                                                           | 2       | K2      | Flipped Class          | Assignment                 |  |  |

|   | 3. | Markov Chain with Denumerable<br>Number of States-Reducible<br>Chains-Finite Reducible Chains<br>with a Single Closed Class                | 2 | K2      | Illustrative<br>Method    | Questioning |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------|---|---------|---------------------------|-------------|
| - | 4. | Chain with One Single Class of<br>Persistent Non-null Aperiodic<br>States-Absorbing Markov Chains                                          | 2 | K2 & K3 | Content based             | MCQ         |
| - | 5. | Aperiodic Chain: Limiting<br>Behaviour-Stability of a Markov<br>SystemExtension: Reducible<br>Chain with one Closed class of<br>Persistent | 2 | К2      | Collaborative<br>learning | Home work   |
| - | 6. | Aperiodic States- Further<br>Extension: Reducible Chains with<br>more than one Closed Class                                                | 2 | K2 & K3 | Content Based             | Slip Test   |

| III | Normal Subgroups |                                                                                                                                   |      |         |                           |             |  |  |  |  |  |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------|------|---------|---------------------------|-------------|--|--|--|--|--|
|     | 1.               | Poisson Process-Introduction                                                                                                      | 2    | K1      | Brainstorming             | Quiz        |  |  |  |  |  |
|     | 2.               | Postulates for Poisson Process-<br>Properties of Poisson Process                                                                  | 3    | K4      | Content Based             | Slip Test   |  |  |  |  |  |
|     | 3.               | Poisson Process and Related<br>Distributions-Interarrival Time                                                                    | 2    | K1      | Illustrative<br>Method    | Test        |  |  |  |  |  |
|     | 4.               | Further Interesting Properties of<br>Poison Process                                                                               | 3    | K4      | Chalk and Talk            | Questioning |  |  |  |  |  |
|     | 5.               | Generalisations of Poison Process-<br>Poison Process in Higher<br>Dimensions-Poisson Cluster<br>Process(Compound                  | 2    | K2 & K3 | Collaborative<br>learning | MCQ         |  |  |  |  |  |
| IV  |                  |                                                                                                                                   | Ring | S       |                           | 1           |  |  |  |  |  |
|     | 1.               | Birth and Death Process-<br>Particular Cases Stationary<br>Processes-Second-Order<br>Processes-Stationarity-Gaussian<br>Processes | 2    | K1      | Brainstorming             | Quiz        |  |  |  |  |  |

|   | 2. | Markov Processes with Discrete<br>Stat Space                                                                                                           | 3     | K4      | Collaborative<br>learning | Questioning            |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------|------------------------|
|   | 3. | Introduction-Chapman-<br>Kolmogorov Equations                                                                                                          | 2     | K2 & K3 | Content based             | Slip Test              |
|   | 4. | Limiting Distribution (Erodicity<br>of Homogeneous Markov<br>Process).                                                                                 | 2     | K2      | Illustrative<br>Method    | Home Work              |
|   | 5. | Stationary Processes-Second-<br>Order Processes                                                                                                        | 2     | K1 & K5 | Chalk and Talk            | Assignment             |
|   | 6. | Stationarity-Gaussian Processes                                                                                                                        | 1     | К3      | Flipped Class             | Recall<br>Concepts     |
| V |    |                                                                                                                                                        | Ideal | S       |                           |                        |
|   | 1. | Time Series : Introduction-Purely<br>Random Process.                                                                                                   | 2     | K1      | Brainstorming             | Open book<br>test      |
|   | 2. | First Order Markov Process-<br>Moving Average(MA) Process                                                                                              | 2     | K6      | Collaborative<br>learning | Questioning            |
|   | 3. | Autoregressive Process(AR<br>Process)-Autoregressive Process<br>of Order Two(Yule Process)-<br>Autoregressive Morning Average<br>Process(ARMA Process) | 2     | K1 & K3 | Content based             | Slip test              |
|   | 4. | Process time and Frequency<br>Domain:Power Supremum                                                                                                    | 2     | K3      | Flipped Class             | Assignment             |
|   | 5. | Properties of Covariance and<br>Correlation Functions                                                                                                  | 2     | K5      | Chalk and Talk            | MCQ                    |
|   | 6. | Continuous Parameter Processes-<br>Statistical Analysis of Time<br>Series : Some Observations                                                          | 2     | K4      | Blended<br>learning       | Concept<br>Explanation |

Course Focussing on Employability/ Entrepreneurship/ Skill Development:

Employability.

Activities (Em/ En/SD): Poster Presentation, Model Making (Application of algebraic concept).

Assignment: Solving transition probability Matrix Problems.

Sample questions

Part A(each one mark)

1. What is the term for a sequence of random variables indexed by time?

a) Process b) Time c) Stationary

a)

- 2. What is the distribution type in which the probability of events depends only on their distance in time?
- a) Process b) Time c) Stationary
- 3. ----- describes a process where the future is independent of the past given the present?
- 4. What type of process is described by a finite number of states?

a) Markov Process b) Discrete c) Stationary

5. State True or False

Stationary is essential for predicting the long-run proportion of time spent in each state in a Markov chain

Part B(6 marks each)

- 1. Explain the concept of a Markov Process and give an example.
- 2. What is Brownian Motion? Describe its basic characteristics and importance in stochastic processes.
- **3.** Explain Stationarity in the context of stochastic processes. How does weak stationarity differ from strong stationarity?
- 4. Describe Transition Probabilities in a Markov chain. How do they relate to the behavior of the process?
- 5. Outline the concept of Renewal Process and explain how it applies to real-world situations.

- 1. Derive the Chapman-Kolmogorov equations for a Markov chain and explain their significance in analyzing transitions.
- 2. Discuss the Kolmogorov Forward and Backward equations in continuous-time Markov chains. Provide examples of their applications.
- **3.** Describe the Central Limit Theorem for Stochastic Processes and its applications in financial modeling.
- 4. Define a Gaussian Process. Derive and discuss the properties of a Gaussian process, highlighting its importance in machine learning and prediction.
- 5. Analyze the Birth-Death Process in a queuing system and derive the steady-state probabilities for a simple case.

Head of the Department

**Course Instructor** 

Dr. T. Sheeba Helen

Dr.L.Jesmalar

### **Teaching Plan**

| Department               | : Mathematics                                                    |                        |       |       |  |  |  |  |
|--------------------------|------------------------------------------------------------------|------------------------|-------|-------|--|--|--|--|
| Class                    | : II M. Sc Mathe                                                 | : II M. Sc Mathematics |       |       |  |  |  |  |
| Title of the Course      | Title of the Course : SKILL ENHANCEMENT COURSE III: TRAINING FOR |                        |       |       |  |  |  |  |
| COMPETITIVE EXAMINATIONS |                                                                  |                        |       |       |  |  |  |  |
| Semester                 | : IV                                                             |                        |       |       |  |  |  |  |
| <b>Course Code</b>       | : MP234SE1                                                       |                        |       |       |  |  |  |  |
| Course                   |                                                                  | Inst.                  | Total | Marks |  |  |  |  |

| Course   | L | L | T. | т | Р       | s     | Credits | Inst. | Total    | Mark  | s |  |
|----------|---|---|----|---|---------|-------|---------|-------|----------|-------|---|--|
| Code     |   | - |    |   | creatis | Hours | Hours   | CIA   | External | Total |   |  |
|          | 4 | - | -  | - | 2       | 4     | 60      | 25    | 75       | 100   |   |  |
| MP234SE1 |   |   |    |   |         |       |         |       |          |       |   |  |

### **Pre-requisite:**

Strong foundation in algebraic fundamentals, basic number theory, and familiarity with sets and set operations.

### Learning Objectives:

- 1. To solve problems needed for various competitive examinations.
- 2.To develop a comprehensive understanding of algebraic principles enabling

proficient problem-solving in various Mathematical contexts.

| On the s | On the successful completion of the course, students will be able to:                 |    |  |  |  |  |  |
|----------|---------------------------------------------------------------------------------------|----|--|--|--|--|--|
| 1.       | describe the concepts of topological properties of metric spaces.                     | K1 |  |  |  |  |  |
| 2.       | associate the concept of continuity and connectedness                                 | K2 |  |  |  |  |  |
| 3.       | apply Cauchy's integral formula and Maximum modulus principle to<br>evaluate integral | К3 |  |  |  |  |  |
| 4.       | outline Liouville's theorem and open mapping theorem                                  | K4 |  |  |  |  |  |
| 5.       | built the mental ability to face GATE, CSIR and SET examinations                      | K5 |  |  |  |  |  |

#### **Course Outcomes**

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate

# Teaching plan

| Unit | Modulo  | Tonic                  | Teaching | Cognitive | Podegogy      | Assessment/    |
|------|---------|------------------------|----------|-----------|---------------|----------------|
| Omt  | Wiodule | Торіс                  | Hours    | level     | Teuagogy      | Evaluation     |
| Ι    |         |                        |          |           |               |                |
|      |         |                        |          | 1         | -             |                |
|      | 1       | Introduction – Metric  | 3        | K1        | Lecture       | Conceptual     |
|      |         | Spaces                 |          |           | Introduction  | quizzes        |
|      | 2       | Problems in metric     | 3        | K2        | Peer Teaching | Group Activity |
|      |         | spaces                 |          |           |               |                |
|      | 3       | Problems in            | 3        | К2        | Problem       | Assignment     |
|      | 0       | Convergence            | C        |           | Solving       |                |
|      |         | Problems in            |          |           | Collaborative | Short Test     |
|      | 4       | Completeness           | 3        | K3        | Learning      |                |
|      |         |                        |          |           |               |                |
| II   |         |                        |          |           |               |                |
|      |         | Problems in            |          |           | Flipped       | Peer           |
|      | 1       | connectedness          | 4        | K3        | Classroom,    | Assessments    |
|      |         |                        |          |           | Demonstration | Class          |
|      | 2       | Problems in continuity | 4        | K4        | Method        | Discussions    |
|      |         | Problems in totally    |          |           | Problem-Based | Group Projects |
|      | 3       | bounded                | 4        | K3        | Learning      | 1 5            |
|      |         |                        |          |           |               |                |
| III  |         |                        |          |           |               |                |
|      |         |                        |          |           | Interactive   | Evaluation     |
|      | 1       | Problems in algebra of | 2        | K2        | Lectures      | through short  |
|      |         | complex numbers        |          |           |               | test           |
|      |         | Problems in complex    |          |           | Hands-on      | Worksheets     |
|      | 2       | plane                  | 2        | K4        | Exercises     |                |
|      |         | Problems in            |          |           | Interactive   | Slip Test      |
|      | 3       | polynomials, Power     | 2        | K3        | Lectures      | -              |
|      |         | Series                 |          |           |               |                |
|      |         |                        |          |           |               |                |

# Total Contact Hours: 60 (Including lectures, assignments and tests)

|     |   | Problems in          |   |            | Think-Pair-   | Quiz            |
|-----|---|----------------------|---|------------|---------------|-----------------|
|     |   | transcendental       |   |            | Share         | Competition     |
|     |   | functions such as    |   | W2         |               |                 |
|     | 4 | exponential          | 2 | K3         |               |                 |
|     |   | trigonometric and    |   |            |               |                 |
|     |   | hyperbolic functions |   |            |               |                 |
|     | 5 | Problems in Analytic | 2 | V2         | Inquiry-Based | Assignment      |
|     | 5 | Functions            | 2 | K3         | Learning      |                 |
|     |   | Drohlang in Couchy   |   |            | Example-      | Short Test      |
|     | 6 | Problems in Cauchy – | 2 | K4         | Based         |                 |
|     |   | Riemann equations    |   |            | Learning      |                 |
| IV  |   |                      | I | I          |               | 1               |
| - · |   |                      |   |            |               |                 |
|     | 1 | Problems in contour  | 2 | K3         | Interactive   | Peer Discussion |
|     |   | integral             |   | _          | Method        | with questions  |
|     |   | Problems in Cauchy   |   |            | Flipped       | Group Activity  |
|     | 2 | theorem, Cauchy's    | 3 | К2         | Classroom     |                 |
|     | 2 | integral formula,    |   |            |               |                 |
|     |   | Liouville's theorem  |   |            |               |                 |
|     |   | Problems in          |   |            | Hands-on      | Evaluation      |
|     | 3 | Maximum modulus      | 3 | K4         | Learning      | through short   |
|     |   | principle            |   |            |               | test            |
|     | 4 | Problems in Schwarz  | 2 | V2         | Inquiry-Based | Worksheet       |
|     | 4 | lemma                | 2 | КJ         | Learning      |                 |
|     | 5 | Problems in open     | 2 | V A        | Peer Teaching | Group Activity  |
|     | 5 | mapping Theorem      | 2 | <b>N</b> 4 |               |                 |
| V   |   |                      | 1 | 1          |               |                 |
|     | 1 | Problems in Taylors  | 2 | VO         | Collaborative | Peer Reviews    |
|     |   | Series               | 5 | K2         | Learning      |                 |
|     | 2 | Problems in Laurents | 2 | <b>V</b> 2 | step-by-Step  | Interactive     |
|     | 2 | Series               | Δ | кJ         | Learning      | discussions     |
| L   |   |                      |   |            |               |                 |

|   | 3 | Problems in calculus | 2 | К3 | Blended   | Slip Test        |
|---|---|----------------------|---|----|-----------|------------------|
|   |   | of residues          | - |    | Learning  |                  |
| 4 |   | Problems in          | 3 | K4 | Flipped   | Presentations    |
|   | т | Conformal mappings   | 5 |    | Classroom |                  |
|   |   | Problems in Mobius   |   |    | Problem-  | Practical Tests, |
|   | 5 | transformations      | 2 | K4 | Centric   | Presentations    |
|   |   |                      |   |    | Approach  |                  |

Course Focussing on Skill Development.

Activities (Em/ En/SD): Group presentations, Group discussions

Assignment: Find the Taylor and Laurent series expansions for given functions.

Seminar Topic: The Network Layer – Network Layer Design Issues

### Sample questions

### Part A

1. A: Every convergent sequence is a Cauchy sequence.

B: Every Cauchy sequence is a convergent sequence.

- a) A and B are false b) A is true
- c) B is true d) A and B both true
- 2. In a totally bounded metric space, which of the following statements is true?
  - A) Every sequence converges
  - B) Every sequence has a Cauchy subsequence
  - C) Every sequence has a convergent subsequence
  - D) The space is always complete
- 3. Which of the following is a root of the polynomial  $z^2 + 1 = 0$ ?

a) 1 b) -1 c) i d) 0

- 4. Which of the following is a direct consequence of Liouville's Theorem?
  - a) A bounded entire function must be constant
  - b) A function with no singularities in the complex plane must be constant
  - c) A function analytic in a compact set must be constant
  - d) A function that maps the unit disk to itself must be constant
- 5. Which of the following properties is true for a conformal mapping?
  - a) It preserves angles but not shapes

- b) It preserves both angles and shapes
- c) It preserves shapes but not angles
- d) It maps circles to circles only

### Part B

- 1. Show that the sequence  $x_n = 1/n$  is a Cauchy sequence in  $\mathbb{R}$  with the usual metric.
- Prove that the set S = {x ∈ ℝ : 0 ≤ x ≤ 1} is totally bounded with respect to the usual metric on ℝ.
- **3.** Show that  $f(z)=z^2+iz$  satisfies the Cauchy-Riemann equations.
- 4. Apply Cauchy's Integral Formula to find the value of f(a) for the function  $f(z) = 1/(z^2 + 1)$  inside a contour C enclosing z = i.
- 5. Find the Laurent series for f(z)=1/(z(z-1)) about z=0.

### Part C

1. i) Explain why the sequence  $x_n = (1/n, 0)$  is Cauchy and converges to (0,0) in  $\mathbb{R}^2$ .

ii) Show that [0,1] is a connected subset of R.

- **2.** Let  $f(x) = x^3$  on  $\mathbb{R}$ . Prove that f is continuous on  $\mathbb{R}$ .
- 3. Show that the roots of  $z^{3}-1 = 0$  are equally spaced on the unit circle in the complex plane.
- 4. Find the residue of  $f(z) = e^{z} / (z^{2}+1)$  at z = i.
- 5. Find the Taylor series expansion of  $f(z) = e^{z}$  around z = 0 and determine its radius of convergence..

### Head of the Department

#### **Course Instructors**

Dr. T. Sheeba Helen

Dr. V. Sujin Flower & Sr. S. Antin Mary